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Abstract

We explore least squares and likelihood nonparametric mixtures estimators of the joint distribution
of random coefficients in structural models. The estimators fix a grid of heterogenous parameters
and estimate only the weights on the grid points, an approach that is computationally attractive
compared to alternative nonparametric estimators. We provide conditions under which the esti-
mated distribution function converges to the true distribution in the weak topology on the space
of distributions. We verify most of the consistency conditions for three discrete choice models.
We also derive the convergence rates of the least squares nonparametric mixtures estimator under
additional restrictions. We perform a Monte Carlo study on a dynamic programming model.
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1 Introduction

Economic researchers often work with models where the parameters are heterogeneous across the
population. A classic example is that consumers may have heterogeneous preferences over a set of
product characteristics in an industry with differentiated products. These heterogeneous parameters
are often known as random coefficients. When working with cross sectional data, the goal is often to
estimate the distribution of heterogeneous parameters. Our paper establishes the consistency and rates
of convergence of “fixed grid” nonparametric estimators for a distribution of heterogeneous parameters
due to Bajari, Fox and Ryan (2007), Train (2008, Section 6), Fox, Kim, Ryan and Bajari (2011), and
Koenker and Mizera (2014). These estimators are computationally simpler than some alternatives. We
use FKRB to refer to Fox, Kim, Ryan and Bajari (2011).

We estimate the distribution of heterogeneous parameters F (β) in the model

Pj (x) =

∫
gj (x, β) dF (β) , (1)

where j is the index of the jth out of J finite values of the outcome y, x is a vector of observed
explanatory variables, β is the vector of heterogeneous parameters, and gj (x, β) is the probability that
the jth outcome occurs for an observation with heterogeneous parameters β and explanatory variables
x. Given this structure, Pj (x) is the cross sectional probability of observing the jth outcome when
the explanatory variables are x. The researcher picks gj (x, β) as the underlying model, has an i.i.d.
sample of N observations (yi, xi), and wishes to estimate F (β). As F is only restricted to be a valid
CDF, the mixture model (1) is nonparametric.

The unknown distribution F (β) enters (1) linearly. The estimators we analyze exploit linearity
and achieve a computationally simpler estimator than some alternatives. All the fixed grid estimators
divide the support of the vector β into a finite and known grid of vectors β1, . . . , βR. Computationally,
the unknown parameters are the weights θ1, . . . , θR on the R grid points. These can be estimated using
a least squares or likelihood criterion with the constraints that each θr ≥ 0 and that

∑R
r=1 θ

r = 1. The
estimator of the distribution F (β) with N observations and R grid points becomes

F̂N (β) =
∑R

r=1
θ̂r1 [βr ≤ β] ,

where θ̂r’s denote estimated weights and 1 [βr ≤ β] is equal to 1 when βr ≤ β. Computationally,
the least squares and likelihood constrained optimization problems are globally convex and concave,
respectively. Particular numerical algorithms are guaranteed to converge to a global optimum.

FKRB discuss the advantages of this estimator for complex structural models, like dynamic pro-
gramming models with heterogeneous parameters. In this respect, fixed grid estimators share some
computational advantages with the parametric approach in Ackerberg (2009). Our Monte Carlo study
in an online appendix is to a discrete choice, dynamic programming model.

FKRB and other previous analyses assume that the R grid points used in a finite sample are indeed
the true grid points that contain the finite support of the true F0 (β). Thus, the true distribution F0 (β)

is assumed to be known up to a finite number of weights θ1, . . . , θR. As economists often lack convincing
economic rationales to pick one set of grid points over another, assuming that the researcher knows
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the true distribution up to finite weights is unrealistic.
Instead of assuming that the distribution is known up to weights θ1, . . . , θR, this paper requires

the true distribution F0 (β) to satisfy much weaker restrictions. In particular, the true F0 (β) can have
any of continuous, discrete and mixed continuous and discrete supports. The prior approaches are
parametric as the true weights θ1, . . . , θR lie in a finite-dimensional subset of a real space. Here, the
approach is nonparametric as the true F0 (β) is known to lie only in the infinite-dimensional space of
multivariate distributions on the space of heterogeneous parameters β.

In a finite sample of N observations, our estimators are still implemented by choosing a fixed grid of
points θ1, . . . , θR , ideally to trade off bias and variance in the estimate F̂N (β). We, however, recognize
that as the sample increases, R and thus the fineness of the grid of points should also increase in order
to reduce the bias in the approximation of F (β). We write R (N) to emphasize that the number of
grid points (and implicitly the grid of points itself) is now a function of the sample size. The main
theorem in our paper is that, under restrictions on the economic model and an appropriate choice of
R (N), our least squares and likelihood estimators F̂N (β) converge to the true F0 (β) as N → ∞, in
a function space. We use the Lévy-Prokhorov metric, a common metrization of the weak topology on
the space of multivariate distributions.

We recognize that the nonparametric versions of our estimators are special cases of sieve estimators
(Chen 2007). Sieve estimators estimate functions by increasing the flexibility of the approximating
class used for estimation as the sample size increases. A sieve estimator for a smooth function might
use an approximating class defined by a Fourier series, for example. As we are motivated by practical
considerations in empirical work, our estimators’ choice of basis, a finite grid of points, is justified
by the estimators’ computational simplicity. Further and unlike a typical sieve estimator, we need to
constrain our estimated functions to be valid distribution functions. Our constrained least squares and
likelihood approaches are both computationally simple and ensure that the estimated CDFs satisfy the
theoretical properties of a valid CDF.

Because our estimators are sieve estimators, we prove their consistency by satisfying high-level
conditions for the consistency of sieve extremum estimators, as given in an appendix lemma in Chen
and Pouzo (2012). We repeat this lemma and its proof in our paper so our consistency proof is self-
contained. Our fixed grid estimators are not a special case of the two-step sieve estimators explored
using lower-level conditions in the main text of Chen and Pouzo.1

We prove the consistency of our estimators for the distribution of heterogeneous parameters, in
function space under the weak topology. We present separate theorems for mixtures of discrete grid
points and mixtures of continuous densities with a grid of points over the parameters of each density.
The theorem for the mixture of grid points requires the heterogeneous parameters to lie in a, not nec-
essarily known, compact set. The theorem for a mixture of continuous densities allows for unbounded
support of the heterogeneous parameters. Our consistency theorems are not specific to the economic
model being estimated.

We provide the rate of convergences for a subset of the models handled by our consistency theo-
rem, namely those that are differentiable in the heterogeneous parameters, which include the random

1Note that under the Lévy-Prokhorov metric on the space of multivariate distributions, the problem of optimizing
the population objective function over the space of distributions turns out to be well posed under the definition of Chen
(2007). Thus, our method does not rely on a sieve space to regularize the estimation problem to address the ill-posed
inverse problem, as much of the sieve literature focuses on.
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coefficients logit model. The convergence rates, the asymptotic estimation error bounds, consist of
two terms: the bias and the variance. While obtaining the variance term is rather standard in the
sieve estimation literature, deriving the bias term depends on the specific approximation methods (e.g.,
power series or splines). Because our use of approximating functions is new in the sieve estimation
literature, deriving the bias term is not trivial. We provide the bias term, which is the smallest possible
approximation error of the true function using sieves for the class of models we consider.

Our rate of convergence results highlight an important practical issue with any nonparametric es-
timator: there is a curse of dimensionality in the dimension of the heterogeneous parameters. Larger
sample sizes will be needed if the vector of heterogeneous parameters has more elements. Further,
the rate results indicate that our baseline estimator is not practical when there is a large number of
heterogeneous parameters. In high dimensional settings, we suggest allowing heterogeneous parameters
on only a subset of explanatory variables and estimating homogenous parameters on the remaining
explanatory variables. We extend our consistency result to models where some parameters are ho-
mogeneous. However, including homogeneous parameters requires nonlinear optimization, which loses
some of the computational advantages of our estimators.

We provide a Monte Carlo study in an online appendix. We estimate a dynamic programming,
discrete choice model, adding heterogeneous parameters to the framework of Rust (1987). The dynamic
programming problem must be solved once for each realization of the heterogeneous parameters. We
present results for both the fixed grid likelihood and least squares estimators as well as, for comparison,
a likelihood estimator where we estimate both the grid of points and the weights on those points. We
show that our fixed grid estimators have superior speed but inferior statistical accuracy compared to
the more usual approach of estimating a flexible grid.

The outline of our paper is as follows. Section 2 presents three examples of discrete choice mixture
models. Section 3 introduces the estimation procedures. Section 4 demonstrates consistency of our
estimators in the space of multivariate distributions. Section 5.1 extends our consistency results to
models with both heterogeneous parameters and homogeneous parameters and Section 5.2 considers
mixtures of smooth basis densities. Section 6 verifies most of the primitive conditions for consistency
established in Section 4 using the three examples of mixture models in Section 2. Section 7 derives the
convergence rates of the nonparametric estimator for a class of models. Finally, an online appendix
presents the Monte Carlo study.

2 Examples of Mixture Models

In our framework, the object the econometrician wishes to estimate is F (β), the distribution of the
vector of heterogeneous parameters β. One definition of identification is that a unique F (β) solves
(1) for all x and all outcomes j = 1, . . . , J . This is the definition used in certain relevant papers on
identification in the statistics literature, for example Teicher (1963).

We will return to these three examples of discrete choice models later in the paper. Each example
considers economic models with heterogeneous parameters that play a large role in empirical work.
Some of the example models are nested in others, but verification of the conditions for consistency in
Section 6 will use additional restrictions on the supports of x and β that are non-nested across models.
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Example 1. (logit) Let there be a multinomial choice model such that y is one of J unordered choices,
such as types of cars for sale. For j ≥ 2, the utility of choice j to consumer i is ui,j = x′i,jβi+εi,j , where
xi,j is a vector of observable product characteristics of choice j and the demographics of consumer i, βi
is a vector of random coefficients giving the marginal utility of each car’s characteristics to consumer
i, and εi,j is an additive, consumer- and choice-specific error. There is an outside good 1 with utility
ui,1 = εi,1. The consumer picks choice j when ui,j > ui,h ∀h 6= j. The random coefficients logit model
occurs when εi,j is known to have the type I extreme value distribution. In this example, (1) becomes,
for j ≥ 2,

Pj (x) =

∫
gj (x, β) dF (β) =

∫ exp
(
x′jβ

)
1 +

∑J
h=2 exp

(
x′hβ

)dF (β) ,

where x = (x2, . . . , xJ). A similar expression occurs for other choices h 6= j. Compared to prior
empirical work using the random coefficients logit, our goal is to estimate F (β) nonparametrically.

Example 2. (binary choice) Let J = 2 in the previous example, so that there is one inside good
and one outside good. Thus, the utility of the inside good 2 is ui,2 = εi + x′iβ2,i, where βi = (εi, β2,i) is
seen as one long vector and εi supplants the logit errors in Example 1 and plays the role of a random
intercept. The outside good 1 has utility ui,1 = 0. In this example, (1) becomes, for j = 2,

P2 (x) =

∫
g2 (x, β) dF (β) =

∫
1
[
ε+ x′β2 ≥ 0

]
dF (β) ,

where 1 [·] is the indicator function equal to 1 if the inequality in the brackets is true. Without logit
errors, the joint distribution of both the intercept and the slope coefficients is estimated nonparamet-
rically. In this example, g2 (x, β) is discontinuous in β.

Example 3. (multinomial choice without logit errors) Consider a multinomial choice model
where the distribution of the previously logit errors is also estimated nonparametrically. In this case,
the utility to choice j ≥ 2 is ui,j = x′i,j β̃i + εi,j and the utility of the outside good 1 is ui,1 = 0. The

notation β̃i is used because the full heterogeneous parameter vector is now βi =
(
β̃i, εi,2, . . . , εi,J

)
,

which is seen as one long vector. We will not assume that the additive errors εi,j are distributed
independently of βi or of each other. In this example, (1) becomes, for j ≥ 2,

Pj (x) =

∫
gj (x, β) dF (β) =

∫
1
[
x′j β̃ + εj ≥ max

{
0, x′hβ̃ + εh

}
∀h 6= j, h ≥ 2

]
dF (β) .

3 Estimator

We analyze both least squares (linear probability models) and maximum likelihood criteria. We first
discuss the least squares criterion, from FKRB. Recall that yi,j is equal to 1 whenever the outcome yi
for the ith observation is j, and 0 otherwise. Start with the model (1) and add yi,j to both sides while
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moving Pj (x) to the right side. For the statistical observation i, this gives

yi,j =

∫
gj (xi, β) dF (β) + (yi,j − Pj (xi)) . (2)

By the definition of Pj (x), the expectation of the composite error term yi,j − Pj (x), conditional on
x, is 0. This is a linear probability model with an infinite-dimensional parameter, the distribution
F (β). We could work directly with this equation if it was computationally simple to estimate this
infinite-dimensional parameter while constraining it to be a valid CDF.

Instead, we work with a finite-dimensional sieve space approximation to F . In particular, we let
R (N) be the number of grid points in the grid BR(N) =

(
β1, . . . , βR(N)

)
. A grid point is a vector if

β is a vector, so R (N) is the total number of points in all dimensions. The researcher chooses BR(N).
Given the choice of BR(N), the researcher estimates θ =

(
θ1, . . . , θR(N)

)
, the weights on each of the

grid points. With this approximation, (2) becomes

yi,j ≈
R(N)∑
r=1

θrgj (xi, β
r) + (yi,j − Pj (x)) . (3)

We use the ≈ symbol to emphasize that (3) uses a sieve approximation to the distribution function
F (β). Because each θr enters yi,j linearly, we estimate

(
θ1, . . . , θR(N)

)
using the linear probability

model regression of yi,j on the R “regressors” zri,j = gj (xi, β
r).

To be a valid CDF, θr ≥ 0 ∀ r and
∑R(N)

r=1 θr = 1. Therefore, the estimator is

θ̂ = arg min
θ

1

NJ

∑N

i=1

∑J

j=1

yi,j − R(N)∑
r=1

θrzri,j

2

(4)

subject to θr ≥ 0∀ r = 1, . . . , R (N) and
R(N)∑
r=1

θr = 1.

There are J “regression observations” for each statistical observation (yi, xi). This minimization prob-
lem is a quadratic programming problem subject to linear inequality constraints. The minimization
problem is convex and routines like MATLAB’s lsqlin guarantee finding a global optimum. One can
construct the estimated cumulative distribution function for the heterogeneous parameters as

F̂N (β) =
∑R(N)

r=1
θ̂r1 [βr ≤ β] .

Thus, we have a structural estimator for a distribution of heterogeneous parameters in addition to a
flexible method for approximating choice probabilities.

Following Train, we can also use the log-likelihood criterion (divided by the sample size)

L =

N∑
i=1

log

R(N)∑
r=1

θrzri,yi

 /N,
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where the zri,yi are the probabilities computed above for the observed outcome yi for observation i. As

with the least squares criterion, we enforce the constraints θr ≥ 0∀ r = 1, . . . , R (N) and
∑R(N)

r=1 θr = 1.
Computationally, one can use the EM algorithm in Train’s Section 6 or a nonlinear, gradient-based
search routine, which is available in most scientific packages. The performance of the gradient-based
search routine will be improved if the gradient of the likelihood is provided to the solver in closed form.
The sth element of that gradient is

∂L

∂θs
=

N∑
i=1

zsi,yi∑R(N)
r=1 θrzri,yi

/N.

The log likelihood is globally concave and any local maximum found will be the global maximum.
The fixed grid approach, whether based on a least squares or a likelihood criterion, has two main

advantages over other approaches to estimating distributions of heterogeneous parameters. First,
the approach is computationally simple: we can always find a global optimum and, by solving for
zri,j = gj (xi, β

r) before optimization commences, we avoid many evaluations of complex structural
models such as dynamic programming problems. Second, the approach is nonparametric. In the next
section, we show that if the grid of points is made finer as the sample size N increases, the estimators
F̂N (β) converge to the true distribution F0. We do not need to impose that F0 lies in known parametric
family.

On the other hand, a disadvantage is that the estimates may be sensitive to the choice of tuning
parameters. While most nonparametric approaches require choices of tuning parameters, here the
choice of a grid of points is a particularly high-dimensional tuning parameter. FKRB propose cross-
validation methods to pick these tuning parameters, including the number of grid points, the support
of the points, and the grid points within the support.

Example. 1 (logit) For the logit example,
exp(x′i,jβr)

1+
∑J
h=2 exp(x′i,hβr)

= gj (xi, β
r). To implement the least

squares estimator, for each statistical observation i, the researcher computes R · J probabilities zri,j =
exp(x′i,jβr)

1+
∑J
h=2 exp(x′i,hβr)

. This computation is done before optimization commences. The outcome for choos-

ing the outside good 1 does not need to be included in the objective function, as
∑J

j=1 gj (xi, β
r) = 1.

To implement the likelihood estimator, the researcher computes R probabilities zri,yi for each statistical
observation i.

Remark 1. FKRB discuss the case of panel data on T periods. Let yTi = (yi,1, . . . , yi,T ) be the
actual sequence of T outcomes for panel observation i. Similarly, let the explanatory variables be
(xi,1, . . . , xi,T ). The likelihood criterion for panel data is

L =

N∑
i=1

log

R(N)∑
r=1

θrzr
i,yTi

 /N,

where zr
i,yTi

=
∏T
t=1 gyi,t (xi,t, β

r). We do not explore panel data in our theoretical results.
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4 Consistency in Function Space

Assume that the true distribution function F0 lies in the space F of distribution functions on the
support B of the heterogeneous parameters β. We wish to show that the estimated distribution
function F̂N (β) =

∑R(N)
r=1 θ̂r1 [βr ≤ β] converges to the true F0 ∈ F as the sample size N grows large.

To prove consistency, we use the results for sieve estimators developed by Chen and Pouzo (2012),
hereafter referred to as CP. We define a sieve space to approximate F as

FR =

{
F | F (β) =

∑R

r=1
θr1 [βr ≤ β] , θ ∈ ∆R ≡

{(
θ1, . . . , θR

)′ | θr ≥ 0,
∑R

r=1
θr = 1

}}
,

for a choice of grid BR =
(
β1, . . . , βR

)
that becomes finer as R increases. We require FR ⊆ FS ⊂ F for

S > R, or that large sieve spaces encompass smaller sieve spaces. The choice of the grids and R (N)

are up to the researcher; however consistency will require conditions on these choices.
Based on CP, we prove that the estimator F̂N converges to the true F0. In their main text, CP study

sieve minimum distance estimators that involve a two-stage procedure. Our estimator is a one-stage
sieve least squares estimator (Chen, 2007) and so we cannot proceed by verifying the conditions in the
theorems in the main text of CP. Instead, we show its consistency based on CP’s general consistency
theorem in their appendix, their Lemma A.2, which we quote in the proof of our consistency theorem
for completeness. As a consequence, our consistency proof verifies CP’s high-level conditions for the
consistency of a sieve extremum estimator.

First, we consider the least squares criterion and then the likelihood criterion follows. Let yi denote
the J×1 finite vector of binary outcomes (yi,1, . . . , yi,J) and let g(xi, β) denote the corresponding J×1

vector of choice probabilities (g1 (xi, β) , . . . , gJ (xi, β)) given xi and the heterogeneous parameter β.
Then we can define our sample criterion function for least squares as

Q̂N (F ) ≡ 1

NJ

∑N

i=1

∥∥∥∥yi − ∫ g(xi, β)dF (β)

∥∥∥∥2

E

=
1

NJ

∑N

i=1

∥∥∥∥yi −∑R

r=1
θrg(xi, β

r)

∥∥∥∥2

E

(5)

for F ∈ FR(N), where || · ||E denotes the Euclidean norm. We can rewrite our estimator as

F̂N = argminF∈FR(N)
Q̂N (F ) + C · νN (6)

where we can allow for some tolerance (slackness) of minimization, C · νN , that is a positive sequence
tending to zero as N gets larger, if necessary.

Also let

Q(F ) ≡ E

[∥∥∥∥y − ∫ g (x, β) dF (β)

∥∥∥∥2

E

/J

]
be the population objective function.

As a distance measure for distributions, we use the Lévy-Prokhorov metric, denoted by dLP(·),
which is a metrization of the weak topology for the space of multivariate distributions F . The Lévy-
Prokhorov metric in the space of F is defined on a metric space (B, d) with its Borel sigma algebra
Σ(B). We use the notation dLP(F1, F2), where the measures are implicit. This denotes the Lévy-
Prokhorov metric dLP(µ1, µ2), where µ1 and µ2 are probability measures corresponding to F1 and F2.
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The Lévy-Prokhorov metric is defined as

dLP (µ1, µ2) = inf {ε > 0 | µ1 (C) ≤ µ2 (Cε) + ε andµ2 (C) ≤ µ1 (Cε) + ε for all Borel measurableC ∈ Σ(B)} ,

where C ⊆ B and Cε = {b ∈ B | ∃ a ∈ C, d (a, b) < ε}. The Lévy-Prokhorov metric is a metric, so that
dLP (µ1, µ2) = 0 only when µ1 = µ2. See Huber (1981, 2004).

The following assumptions are on the economic model and data generating process. We write
P (x, F ) =

∫
g(x, β)dF (β).

Assumption 1.

1. Let F be a space of distribution functions on a finite-dimensional real space B. F is compact in
the weak topology and contains the true F0.

2. Let ((yi, xi))
N
i=1 be i.i.d.

3. Let β be independently distributed from x.

4. Assume the model g (x, β) is identified, meaning that for any F1 6= F0, F1 ∈ F , the set X̃ ⊆ X
where P (x, F0) 6= P (x, F1) has a positive measure in X .2

5. Q (F ) is continuous on F in the dLP (·, ·) metric.

Assumption 1.1, the compactness of F is satisfied if B itself is compact in Euclidean space (Parthasarathy
1967, Theorem 6.4). Unfortunately, the compactness of B rules out some examples such as normal dis-
tributions of heterogeneous parameters. In part to address this, Section 5.2 provides a consistency
theorem for a related estimator, which can use mixtures of normal distributions, where the support
of the heterogeneous parameters is allowed to be RK . Assumptions 1.2 and 1.3 are standard for
nonparametric mixtures models with cross-sectional data.

Assumption 1.4 requires that the model be identified at a set of values of x that occurs with positive
probability. The assumption rules out so-called fragile identification that could occur at values of x
with measure zero (such as identification at infinity). Assumptions 1.4 and 1.5 need to be verified for
each economic model g (x, β). We will discuss these assumptions for our three examples in Section 6.

Remark 2. Assumption 1.5 is satisfied when g(x, β) is continuous in β for all x because in this case
P (x, F ) is also continuous on F for all x in the Lévy-Prokhorov metric. Then by the dominated conver-
gence theorem, the continuity of Q (F ) in the dLP(·, ·) metric follows from the continuity of P (x, F ) on
F for all x and P (x, F ) ≤ 1 (uniformly bounded). Here the continuity of P (x, F ) on F means for any
F1 ∈ F and such that dLP(F1, F2) → 0 it must follow that

∣∣∫ gj(x, β)dF1(β)−
∫
gj(x, β)dF2(β)

∣∣ → 0

for all j. This holds by the definition of weak convergence when g(x, β) is continuous and bounded
and because the Lévy-Prokhorov metric is a metrization of the weak topology.

2This is with respect to the probability measure of the underlying probability space. This probability is well defined
whether x is continuous, discrete or some elements of x are functions of other elements (e.g. polynomials or interactions).
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Remark 3. If the support B is a finite set, the continuity of Q (F ) holds even when gj(x, β) is dis-
continuous, because in this case the Lévy-Prokhorov metric becomes equivalent to the total variation
metric (see Huber 1981, p.34). This implies∣∣∣∣∫ gj(x, β)dF1(β)−

∫
gj(x, β)dF2(β)

∣∣∣∣→ 0

for any F1, F2 ∈ F such that dLP(F1, F2) → 0, in part because gj(x, β) is bounded between 0 and 1.
We do not have a counterexample to continuity when B is not a finite set. Note that our consistency
result for a mixtures of parametric densities, presented in Section 5.2, has a continuity condition that
is easier to verify for discontinuous gj(x, β), as Section 6 discusses.

In addition to Assumption 1, we also require that the grid of points be chosen so that the grid BR
becomes dense in B in the usual topology on the reals.

Condition 1. Let the choice of grids satisfy the following properties:

1. Let BR become dense in B as R→∞.

2. FR ⊆ FR+1 ⊆ F for all R ≥ 1.

3. R(N)→∞ as N →∞ and it satisfies R(N) logR(N)
N → 0 as N →∞.

The first two parts of this condition have previously been mentioned and ensure that the sieve
spaces give increasingly better approximations to the space of multivariate distributions. Condition
1.3 specifies a rate condition so that the convergence of the sample criterion function Q̂N (F ) to the
population criterion function Q(F ) is uniform over FR. Uniform convergence of the criterion function
and identification are both key conditions for consistency.

Theorem 1. Suppose Assumption 1 and Condition 1 hold. Then, dLP

(
F̂N , F0

)
p→ 0.

See Appendix B.1 for the proof of the forthcoming Theorem 2, which nests Theorem 1.

Remark 4. Appendix A proves that this estimation problem is well posed under the definition of Chen
(2007).

Next, we consider the distribution function estimator using the log-likelihood criterion. Define the
population criterion function and its sample analog, respectively, as

Q(F ) ≡ −QML(F ) ≡ −E

 J∑
j=1

yi,j logPj(xi, F )

 = −E

 J∑
j=1

yi,j log

∫
gj(xi, β)dF (β)


and

Q̂N (F ) ≡ −Q̂ML
N (F ) ≡ − 1

N

∑N

i=1

J∑
j=1

yi,j logPj(xi, F ) = − 1

N

∑N

i=1

J∑
j=1

yi,j log

∫
gj(xi, β)dF (β)

for F ∈ FR(N). Then we can obtain the ML estimator as in (6) and denote the resulting estimator by
F̂ML
N . We obtain the following corollary for the consistency of this ML estimator
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Corollary 1. Suppose Assumption 1 and Condition 1 hold. Further suppose that Pj (x, F ) is bounded
away from zero for all j and F ∈ F . Then, dLP

(
F̂ML
N , F0

)
p→ 0.

See Appendix B.2 for the proof.

Remark 5. The literature on sieve estimation has not established general results on the asymptotic
distribution of sieve estimators, in function space. However, for rich classes of approximating basis
functions that do not include our approximation problem, the literature has shown conditions under
which finite dimensional functionals of sieve estimators have asymptotically normal distributions. In
the case of nonparametric heterogeneous parameters, we might be interested in inference in the mean
or median of β. For demand estimation, say Example 3, we might be interested in average responses
(or elasticities) of choice probabilities with respect to changes in particular product characteristics.
Let ΠNF0 be a sieve approximation to F0 in our sieve space FR(N). If we could obtain an error bound
for dLP (ΠNF0, F0), we could also derive the convergence rate in the Lévy-Prokhorov metric (Chen
2007). If the error bound shrinks fast enough as R(N) increases, we conjecture that we could also
prove that plug-in estimators for functionals of F0 are asymptotically normal (Chen, Linton, and van
Keilegom 2003).3 Error bounds for discrete approximations are available in the literature for a class of
parametric distributions F , but we are not aware of results for the unrestricted class of multivariate
distributions. For a subset of problems, including the random coefficients logit, we are able to derive
approximation error bounds. We provide convergence rates for these cases in Section 7.

5 Extensions

5.1 Models with Homogenous Parameters

In many empirical applications, it is common to have both heterogeneous parameters β and finite-
dimensional parameters γ ∈ Γ ⊆ Rdim(γ). We write the model choice probabilities as g(x, β, γ) and the
aggregate choice probabilities as P (x, F, γ). Here we consider the consistency of estimators for models
with both homogenous parameters and heterogeneous parameters. For conciseness, we state a theorem
for the least squares criterion and omit a corollary for the likelihood criterion.

Remark 6. Estimating a model allowing a parameter to be a heterogeneous parameter when in truth
the parameter is homogeneous will not affect consistency if the model with heterogeneous parameters
is identified.

Remark 7. Searching over γ as a homogeneous parameter for the least squares criterion requires nonlin-
ear least squares. The optimization problem may also not be globally convex. The objective function
may not be differentiable for our examples where g(x, β, γ) involves an indicator function.

Our estimator for models with homogeneous parameters is defined as (similarly to (6))

(γ̂N , F̂N ) = argmin(γ,F )∈Γ×FR(N)
Q̂N (γ, F ) + C · νN ,

3We conjecture that we could prove an analog to Theorem 2 in Chen et al (2003) if we could verify analogs to
conditions (2.4)–(2.6) in that paper for our sieve space.
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where Q̂N (γ, F ) denotes the corresponding sample criterion function. Q(γ, F ) is the population cri-
terion function based on the model g(x, β, γ). An alternative computational strategy is profiling, as
in

F̂N (γ) = argminF∈FR(N)
Q̂N (γ, F ) + C · νN for all γ ∈ Γ.

Profiling gives us
γ̂N = argminγ∈ΓQ̂N

(
γ, F̂N (γ)

)
+ C · νN ,

and therefore F̂N = F̂N (γ̂N ). We make the following assumptions to prove consistency for models with
homogenous parameters.

Assumption 2.

1. Let A ≡ Γ × F where F is compact in the weak topology and Γ is a compact subset of Rdim(γ)

and A contains the true (γ0, F0).

2. Let ((yi, xi))
N
i=1 be i.i.d.

3. Let β be independently distributed from x.

4. Assume the model g (x, β, γ) is identified, meaning that for any (γ1, F1) 6= (γ0, F0), (γ1, F1) ∈
Γ×F , the set X̃ ⊆ X where P (x, F0, γ0) 6= P (x, F1, γ1) has a positive measure in X .

5. At least one of the following properties holds.

(a) gj (x, β, γ) is Lipschitz continuous in γ for each outcome j.

(b) (i)
(
γ̂N , F̂N

)
is well-defined and measurable. (ii) For each outcome j, there exists a vec-

tor of known functions h (x, β, γ) = (h1 (x, β, γ) , . . . , hJ (x, β, γ)) such that, for each j,
gj (x, β, γ) = 1 [Aj · h (x, β, γ) > 0] for some vector of known constants Aj. (iii) Each of the
J functions hj (x, β, γ) is Lipschitz continuous in γ.

6. Q (γ, F ) is lower semicontinuous in γ, is continuous on F in the weak topology, and is continuous
at (γ0, F0).

If homogeneous parameters were added in the examples we consider, Assumption 2.5.a would hold
for Example 1, the logit model with random coefficients. Assumption 2.5.b might hold for Examples 2
and 3. See the remark below.

We present the consistency theorem for the estimator with homogeneous parameters.

Theorem 2. Suppose Assumption 2 and Condition 1 hold. Then, γ̂N
p→ γ0 and F̂N

p→ F0.

See Appendix B.1 for the proof. Again, we omit a corollary for the likelihood case.

Remark 8. Assumption 2.5.b is designed to handle extensions of Examples 2 and 3 to include homoge-
neous parameters. In the extensions of these examples, the homogeneous parameters enter inside indi-
cator functions. The non-primitive portion, Assumption 2.5.b.i, requires that the estimator

(
γ̂N , F̂N

)
be well-defined and measurable, echoing a condition in Lemma A.2 of Chen and Pouzo (2012), which
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our consistency proof relies on. Remark A.1.i.a in CP states that lower semicontinuity of the least
squares sample objective function is a sufficient condition for the estimator to be well-defined and mea-
surable. Even though an indicator function for an open set is lower semicontinuous, the least squares
sample objective (or likelihood) function itself might not be lower semicontinuous in γ even if each
gj (x, β, γ) is lower semicontinuous in γ. For example, multiplication by a negative number is enough
to change lower semicontinuity into upper semicontinuity. Therefore, we follow the main text of CP
and, for the case of indicator functions, maintain the non-primitive assumption that the estimator is
well-defined and measurable. Assumption 2.5.b.i states in part that the sample objective function has
a unique global optimum. Although Assumption 2.5.b.i may not actually hold if the homogeneous
parameters enter inside indicator functions, the sample criterion is converging to a population criterion
with a unique global optimum due to Assumptions 2.4 and 2.6. Extending the appendix lemma in Chen
and Pouzo (2012) to the case where the sample objective function has a continuum of multiple global
optima (just like in maximum score) is a minor extension that we do not pursue for space reasons. The
continuity of the population criterion Q(γ, F ) with respect to F can be satisfied using the sufficient
condition discussed in Remark 3 for the earlier Assumption 1.5. The lower semicontinuity with respect
to γ may require further primitive conditions, like the conditions on the support of the explanatory
variables in the results on binary choice in Ichimura and Thompson (1998, Theorem 1).

5.2 Continuous Distribution Function Estimator

A limitation of the discrete approximation estimator is that the CDF of the heterogeneous parameters
will be a step function. In applied work, it is often attractive to have a smooth distribution of heteroge-
neous parameters. In this subsection, we describe one approach to obtain a continuous distribution or
density function estimator that allows for unbounded supports. Instead of modeling the distribution of
the heterogeneous parameters as a mixture of point masses, we instead model the density as a mixture
of parametric densities, e.g. normal densities. Approximating a density or distribution function using
a mixture of parametric densities or distributions is popular (e.g. Jacobs, Jordan, Nowlan, and Hinton
1991, Li and Barron 2000, McLachlan and Peel 2000, and Geweke and Keane 2007). Our estimator’s
advantage is its computational simplicity.

As a leading case, let a basis r be a normal distribution with mean the K×1 vector µr and standard
deviation the K × 1 vector σr. Let φ (β | µr, σr) denote the joint normal density corresponding to the
rth basis distribution. Under independent normal basis functions, the joint density for a given r is
just the product of the marginals, or φ (β | µr, σr) =

∏K
k=1 φ (βk | µrk, σrk) . We can also use only a

location mixture with the basis functions φ (β | µr) =
∏K
k=1 φ (βk | µrk) or use a multivariate normal

mixture with the basis functions φ (β | µr,Σr), where Σr denotes a variance-covariance matrix. We can
also consider mixtures of other parametric density functions. We use the generic notation φ (β | λr) to
denote the rth basis function, where λr is the rth distribution parameter. Let θr denote the probability
weight given to the rth basis function, φ (β | λr). As in the discrete approximation estimator, the vector
of weights θ lies in the unit simplex, ∆R.

There are many ways to perform K-dimensional numerical integration, such as sparse grid quadra-
ture (Heiss and Winschel 2008). We focus on simulation for simplicity. To implement our continuous
density estimator for a given R, make S simulation draws from φ (β | λr) independently of r (i.e. use
independent simulation draws for each λr). Let a particular draw s be denoted as βr,s. We then create
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the R “regressors”

zri,j =

∫
gj (xi, β)φ (β | λr) dβ ≈ 1

S

S∑
s=1

gj (xi, β
r,s) .

The ≈ emphasizes the error (possibly quite small) in numerical integration. This numerical integration
step is done first, before any optimization. We then approximate Pj (xi) as

Pj (xi) ≈
R∑
r=1

θrzri,j .

Here, we use the ≈ to emphasize both sieve and numerical integration approximations, although
typically the sieve approximation will be a larger source of error. We estimate θ using the inequality
constrained least squares problem as before

θ̂S = arg min
θ∈∆R

1

NJ

∑N

i=1

∑J

j=1

(
yi,j −

∑R

r=1
θrzri,j

)2

. (7)

This is once again inequality-constrained linear least squares, a globally convex optimization problem
with an easily-computed unique solution. The resulting density estimator is f̂N,S (β) =

∑R
r=1 θ̂

r
Sφ (β | λr)

and the distribution function estimator is F̂N,S (β) =
∑R

r=1 θ̂
r
SΦ (β | λr), where dΦ(·) = φ(·).

5.2.1 Consistency of the Continuous Distribution Function Estimator

We show consistency for the continuous distribution function estimator after imposing additional re-
strictions on the data generating process. For this purpose, we restrict the class of the true distribution
functions to

FM =

{
F : F =

∫
Φ(β | λ)Pλ(dλ), Pλ ∈ Pλ, dΦ(β | λ) ∈ G =

{
dΦ(β | λ) | β ∈ B ⊆ RK , λ ∈ Λ ⊂ Rd

}}
,

(8)
such that any distribution in FM is in truth given by a mixture of parametric distributions in G.
Note that we allow for B = RK in FM , thus removing the restriction that B is compact underlying
Theorem 1. Here Pλ denotes a probability measure on Λ, the support of the distribution parameter λ.
This means that we assume the true distribution is in the space of possibly continuous mixtures over
some known parametric basis functions. Note, however, that Petersen (1983, as Lemma 3.4 of Zeevi
and Meir (1997)) suggests that any density function can be approximated to arbitrary accuracy by an
infinitely countable convex combination of basis densities, including normals, i.e. G can be dense in
the space of continuous density functions. For example Zeevi and Meir (1997) show that G is dense in
the space of all density functions that are bounded away from zero on compact support. Therefore we
argue that the class FM can be arbitrary close to the space of any continuous distribution functions
with suitable choices of G. We approximate this possibly continuous mixture using a finite mixture
over the same basis functions. Accordingly we construct our sieve space as

FMR =

{
F | F =

∑R

r=1
θrΦ(β | λr), dΦ(β | λ) ∈ G, θ ∈ ∆R

}
.
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First consider an estimator ignoring numerical integration error in the regressors

F̂N (β) =
∑R(N)

r=1
θ̂rΦ(β|λr), (9)

where θ̂ = arg minθ∈∆R(N)

1
NJ

∑N
i=1

∑J
j=1

(
yi,j −

∑R(N)
r=1 θrzri,j

)2
and zri,j =

∫
gj(xi, β)dΦ(β | λr) with

a choice of grid ΛR =
(
λ1, . . . , λR

)
on Λ. We consider simulation error later.

Let F0 =
∫

Φ(β | λ)Pλ,0(dλ) ∈ FM . Then we can present the consistency result in terms of
estimating the true Pλ,0 because knowing Pλ fully characterizes the true F0 given a researcher’s choice
of Φ(β | λ) (e.g. normal distributions). Note that (9) can be also written in terms of estimating Pλ
with the estimator

P̂λ,N (λ) =
∑R(N)

r=1
θ̂r1 [λr ≤ λ]

where the sieve space for Pλ is given by

Pλ,R =

{
Pλ | Pλ (λ) =

∑R

r=1
θr1 [λr ≤ λ] , θ ∈ ∆R

}
.

Therefore F̂N =
∫

Φ(·|λ)dP̂λ,N (dλ)
p→ F0 =

∫
Φ(·|λ)dPλ,0(dλ) as long as P̂λ,N

p→ Pλ,0 because we
assume F0 ∈ FM and because Φ(β|λ) is continuous in λ for all β and therefore F =

∫
Φ(·|λ)dPλ(dλ)

is also continuous on Pλ in the Lévy-Prokhorov metric. This facilitates our analysis because we can
directly apply Theorem 1 to P̂λ,N under assumptions below. To present the consistency theorem we
need additional notation.

Define a sample criterion function in terms of estimating Pλ,0 as

Q̂N (Pλ) ≡ 1

NJ

∑N

i=1

∥∥∥∥yi − ∫ g̃(xi, λ)dPλ (λ)

∥∥∥∥2

E

=
1

NJ

∑N

i=1

∥∥∥∥yi −∑R

r=1
θrg̃(xi, λ

r)

∥∥∥∥2

E

(10)

for Pλ ∈ Pλ,R(N), where g̃(x, λr) =
∫
g(x, β)dΦ(β|λr). Then we can rewrite the estimator P̂λ,N as

P̂λ,N = argminPλ∈Pλ,R(N)
Q̂N (Pλ) + C · νn (11)

for some positive sequence νn tending to zero. Also define the population criterion function as

Q(Pλ) ≡ E

[∥∥∥∥y − ∫ g̃ (x, λ) dPλ (λ)

∥∥∥∥2

E

/J

]
.

We make the following assumptions, which are similar to those used in Theorem 1

Assumption 3.

1. Let FM be a space of distribution functions generated by Pλ in (8), where Λ is compact. FM

contains the true F0.

2. Let ((yi, xi))
N
i=1 be i.i.d.

3. Let both β and λ be independently distributed from x.
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4. Assume the model g(x, β) is identified, meaning that for any Pλ,1 6= Pλ,0, the set X̃ ⊆ X where
P (x, F0) 6= P (x, F1) such that F0 =

∫
Φ(· | λ)Pλ,0(dλ) and F1 =

∫
Φ(· | λ)Pλ,1(dλ) has a positive

measure in X .

5. Q (Pλ) is continuous on Pλ in the weak topology.

We leave out lengthy discussion of these assumptions because most of these assumptions are made
for similar reasons as those in Assumption 1. More discussion is in the beginning of Section 6. We also
require that the choice of grids on Λ satisfies the following properties.

Condition 2. 1. Let ΛR =
(
λ1, . . . , λR

)
become dense in Λ as R→∞.

2. Pλ,R ⊆ Pλ,R+1 ⊆ Pλ for all R ≥ 1.

3. R(N)→∞ as N →∞ and it satisfies R(N) logR(N)
N → 0 as N →∞.

Theorem 3. Suppose Assumption 3 and Condition 2 hold. Then, dLP

(
P̂λ,N , Pλ,0

)
p→ 0 and dLP

(
F̂N , F0

)
p→

0.

A brief proof is in an appendix. However, most of the steps mirror the proofs of Theorems 1 and
2, and so the appendix omits the unchanged steps for conciseness.

Next we account for the simulation error in the basis functions from approximating the integral
with respect to Φ(β | λr). Denote the resulting distribution estimator with simulated basis functions
by F̂N,S (β) ≡

∑R(N)
r=1 θ̂rSΦ(β | λr), where

θ̂S = arg min
θ∈∆R(N)

1

N

∑N

i=1

∑J

j=1

yi,j − R(N)∑
r=1

θr
1

S

S∑
s=1

g(xi, β
r,s)

2

. (12)

Note that all simulation draws are independent and that different draws are used for each r. We
obtain the mixing ratios θ̂S as in (12) using the simulated basis functions and our distribution function
estimator is still F̂N,S (β), which belongs to FMR . Note that we only use simulation to approximate
Φ(β | λr) and to obtain θ̂S in (12). Our distribution estimator is still F̂N,S (β), not F̃N,S (β) ≡∑R(N)

r=1 θ̂rS
1
S

∑S
s=1 1 [βr,s ≤ β], because the CDF Φ(β | λr) is known to researchers. In the normal

distribution case, specialized software calculates the normal CDF Φ(β | λr) with much less error than
typical simulation approaches. We show our estimator is consistent when the number of simulation
draws tends to infinity.

Theorem 4. Suppose Assumption 3 and Condition 2 hold. Let S →∞. Then, dLP

(
F̂N,S , F0

)
p→ 0.

The proof is in the appendix.

6 Discussion of Examples

We return to the examples we introduced in Section 2. We discuss the two key conditions for each model
g (x, β): Assumption 1.4, identification of F (β), and Assumption 1.5, continuity of the population
objective function under the Lévy-Prokhorov metric. Throughout this section, we assume Assumptions
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1.1–1.3 hold. Note that Matzkin (2007) is an excellent survey of older results on the identification of
models with heterogeneity.

For the mixture of continuous densities, the identification of the mixture distribution, Assumption
3.4, will typically occur if the underlying distribution of heterogeneous parameters is identified, As-
sumption 1.4, and the basis functions are chosen appropriately. We do not need to explicitly verify
Assumption 3.4 once Assumption 1.4 is verified. We also do not explicitly verify Assumption 3.5,
continuity of the population objective function in the continuous mixtures cases. An important point
is that even when g(x, β) is nonsmooth as in Examples 2 and 3, g̃(x, λ) =

∫
g(x, β)dΦ(β | λ) can

still be continuous and differentiable in λ because it is smoothed by integration with respect to the
distribution Φ(β | λ). Therefore, Assumption 3.5 can be satisfied by Remark 2.

Example. 1 (logit) The identification of F (β) in the random coefficients logit model is the main con-
tent of Fox, Kim, Ryan, and Bajari (2012, Theorem 15).4 Assumption 14 in Fox et al states that “The
support of x, X contains x = 0, but not necessarily an open set surrounding it. Further, the support
contains a nonempty open set of points (open in Rdim(xj)) of the form

(
x′2, . . . , x

′
j−1, x

′
j , x
′
j+1, . . . , x

′
J

)
=(

0′, . . . , 0′, x′j , 0
′, . . . , 0′

)
.”5 Fox et al also require the support of X to be a product space, which rules

out including polynomial terms in an element of xj or including interactions of two elements of xj .
Given this assumption, Assumption 1.4 holds. Assumption 1.5 holds by Remark 2 in the current paper.

Example. 2 (binary choice) Ichimura and Thompson (1998, Theorem 1) establish the identification
of F (β) under the conditions that i) the coefficient on one of the the non-intercept explanatory variables
in x is known to either always be positive or either always be negative (the sign can be identified), ii)
there is some normalization such as the coefficient known to be positive or negative is always either
+1 or −1 (more generally the random coefficients lie on an unknown hemisphere), iii) there are large
and product supports on each of the explanatory variables other than the intercept. This rules out
polynomial terms and interactions. If we impose the scale normalization βk∗ = ±1, Assumption 1.4
holds if we add large and product support conditions on each explanatory variable in x. An advantage
of our estimator is the ease of imposing sign restrictions if necessary. Because the researcher picks
BR(N) =

(
β1, . . . , βR(N)

)
, the researcher can choose the grid so that the first element of each vector

βr is always positive, for example. Note that binary choice is a special case of multinomial choice, so
the non-nested identification conditions in example 3, below, can replace these used here. Next, note
that the continuity condition (Assumption 1.5) holds by Remark 3 when the support B is a finite set.
We have not shown that continuity holds under only the identification assumptions of Ichimura and
Thompson (1998, Theorem 1), although we know of no counterexamples.

Example. 3 (multinomial choice without logit errors) Fox and Gandhi (2015, Theorem 2) study
the identification of the multinomial choice model without logit errors. Our linear specification of the
utility function for each choice is a special case of what they allow. Fox and Gandhi require a choice-
j-specific explanatory variable with large and product support. On other hand, Fox and Gandhi allow

4Theorem 15 of Fox et al also allows homogeneous, product-specific intercepts.
5Fox et al discusses what x = 0 means when the means of product characteristics can be shifted.
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polynomial terms and interactions for x’s other than the choice-j-specific large support explanatory
variables, unlike examples 1 and 2. They do not require large support for the x’s that are not the
large support, choice-specific explanatory variables. The most important additional assumption for
identification is that Fox and Gandhi require that F (β) takes on at most a finite number T of support
points, although the number T and support point identities β1, . . . , βT are learned in identification.
The number T in the true F0 is not related in any way to the finite-sample R (N) used for estimation
in this paper. So Assumption 1.4 holds under this restriction on F . Next, the continuity Assumption
1.5 holds also by Remark 3 when the support B is a finite set.

7 Estimation Error Bounds

We next derive convergence rates for the approximation of the underlying distribution of heterogeneous
parameters F (β) for a subset of the models allowed in the consistency theorems in Sections 3 and
5.2. These results highlight, among other issues, the curse of dimensionality in the dimension of the
heterogeneous parameters. Larger sample sizes are needed if the dimension K of the heterogeneous
parameters is larger. We present results for the least squares criterion and do not include corollaries
for the likelihood criterion.

7.1 Discrete Approximation Estimator

Our results apply to a narrower set of true models gj(x, β) than the earlier consistency theorems. In
particular, we require that gj(x, β) be smooth, so we allow our Example 1, the logit case, but not the
other examples, where gj(x, β) involves an indicator function. Nevertheless, the random coefficients
logit is a leading model used in empirical work and the results exploiting the smoothness of gj(x, β)

are illustrative of issues, such as the curse of dimensionality, that apply also to nonsmooth choices for
gj(x, β).

Our results relate to the literature on sieve estimations (e.g., Newey (1997) and Chen (2007)).
Of course, the major difference is our choice of discrete basis functions, motivated by our estimator’s
computational advantages and our desire to easily constrain our estimate to be a valid CDF. We cannot
directly apply previous results because of our different sieve space. Our proof technique to derive our
error bounds uses results on quadrature, as we will explain.

We restrict the true distribution F0 to lie in a class of distributions that have smooth densities on a
compact space of heterogeneous parameters. We define the parameter space for the choice probabilities
P (x, F ) as the collection of those generated by such smooth densities:

H =

{
P (x, F ) | max

0≤s≤s
sup
β∈B
|Dsf(β)| ≤ C̄,B =

∏K

k=1

[
β
k
, βk

]
, f = dF ∈ Cs [B]

}
, (13)

where Ds = ∂s

∂β
α1
1 ...∂β

αK
K

, s = α1 + · · · + αK with D0f = f , giving the collection of all derivatives of

order s. Also, Cs[B] is a space of s-times continuously differentiable density functions defined on B.
Therefore we assume any element of the class of density functions that generates H is defined on a
Cartesian product B, is uniformly bounded by C̄ <∞, is s-times continuously differentiable, and has
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all own and partial derivatives uniformly bounded by C̄. The definition of H depends on C̄ and s̄; the
degree of smoothness s̄ will show up in our convergence rate results.

Let the space of approximating functions be

HR(N) =
{
P (x, F ) | F ∈ FR(N)

}
. (14)

We require that the grid points accumulate in FR(N) such that HR ⊆ HR+1 ⊆ . . .. Our approach uses
results from quadrature to pick approximation choices θr such that we can approximate the choice
probability P (x, F0) arbitrarily well using approximating functions in HR(N) as R (N)→∞.

In this section and in the corresponding proofs, we let ‖v‖E =
√
v′v, ‖h‖2L2,N

= 1
N

∑N
i=1 ||h(xi)||2E ,

‖h‖2L2
=
∫
||h||2Ed$ (the norm in L2), and ‖h‖2∞ = supx∈X ||h(x)||2E for any function h : X → R,

where $ denotes a probability measure on X . We introduce the linear probability model error ei,j ,
as in yi,j = Pj(xi, F ) + ei,j and E [ei,j | X1, . . . , XN ] = 0. In addition to restricting the class of true
distributions, we make the following additional assumptions.

Assumption 4. (i)
(
ei = (ei,1, . . . , ei,J)′

)N
i=1

are independently distributed; (ii) E [ei | X1, . . . , XN ] =

0; (iii) (Xi)
N
i=1 are i.i.d. with a density function bounded above; (iv) g(x, β) is s-times continuously

differentiable w.r.t. β and its (all own and partial) derivatives are uniformly bounded ; (v) the sieve
space defined in ( 14) satisfies HR ⊆ HR+1 ⊂ . . . .

Assumptions 4 (i)-(iii) are about the structure of the data and in particular they allow for het-
eroskedasticity for the linear probability error, which is necessary for linear probability models. As
previewed earlier, Assumption 4 (iv) assumes that the true model g(x, β) is differentiable. We use
Assumption 4 (iv) to approximate P (x, F ) using a sieve method for F combined with a quadrature
method for the choice of weights θr. Assumption 4 (iv) is satisfied by Example 1. Assumption 4 (v)
was mentioned previously.

Any asymptotic error bound consists of two terms: the order of bias and the variance. While
obtaining the variance term is rather standard in the sieve estimation literature, deriving the bias
term depends on the specific choice of basis function (e.g., power series or splines in the previous
literature). Because our choice of basis functions is new in the sieve literature, we first state the order
of bias, meaning the approximation error rate of our sieve approximation to arbitrary conditional choice
probabilities P (x, F ) in H. Keep in mind this bias result is primarily about the flexibility of a class of
approximations and has less to do with using a finite sample of data.

Lemma 1. Suppose P (x, F ) ∈ H and suppose Assumptions 4 (iv) and (v) hold. Then there exist F ∗ ∈
FR(N) such that for all x ∈ X , ‖P (x, F ∗)− P (x, F )‖2E = O

(
R−2s/K

)
. Further suppose Assumptions

4 (i)-(iii) hold. Then, ‖P (xi, F
∗)− P (xi, F )‖2L2,N

= OP
(
R−2s/K

)
.

To prove this result, we combine a quadrature approximation with a power series approximation
to approximate P (x, F ) =

∫
g (x, β) f(β)dβ. We first approximate g (x, β) f(β) using a tensor product

power series in β. Then we approximate the integral of the tensor products approximation with respect
to β using quadrature. The complete proof is in Appendix C.3.

Lemma 1 is the key ingredient that allows us to use machinery from the sieve literature for our esti-
mator. Let C be a (generic) positive constant. Define ΨR ≡

(
E
[∑

j gj (Xi, β
r) gj

(
Xi, β

r′
)])

1≤r,r′≤R
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(a R×R matrix) and its smallest eigenvalue as ξmin(R). Then we obtain the following estimation error
bounds.

Theorem 5. Suppose Assumptions 1.1, 1.3, and 1.4 and Condition 1 hold. Suppose Assumption 4
holds. Suppose further that R(N)2 logR(N)

N → 0 and ξmin(R) > 0 for all finite R. Then if P (x, F0) ∈ H
and C is a particular constant,∥∥∥P (xi, F̂N)− P (xi, F0)

∥∥∥2

L2,N

≤ C ·max

{
R(N) logR(N)

ξmin(R(N)) ·N
,R(N)−2s/K

}
w.p.a.1.

Theorem 5 establishes a bound on the distance between the true conditional choice probability and
the approximated conditional choice probability. It shows how the finite-sample estimator is able to
fit data generated by a nonparametric choice of a heterogeneity distribution. Roughly speaking, in the
estimation error bound the first term in the max operator corresponds to an asymptotic variance and
the second term corresponds to an asymptotic bias (Chen 2007). Fixing N , a larger R(N) reduces the
bias but increases the variance and an optimal choice of R(N) is obtained by balancing the bias and
variance. Obtaining the variance term is standard in the sieve estimation literature and obtaining the
bias term requires approximation results that depend on the type of sieves (in the previous literature,
e.g., power series or splines). In the proof, we obtain this bias term using Lemma 1.

There are several lessons from this error bound. The approximation error rate in the bias term
shows that we have faster convergence with a smoother density function s and slower convergence with
a higher dimensional β, K. These results are intuitive. In many other settings, smoother distributions
are easier to approximate and higher dimensional distributions are harder to approximate. Practically,
one might want to use caution when estimating an unrestricted joint distribution of β when K is large.

Note that the condition ξmin(R) > 0 for all finite R in Theorem 5 means the regressors gj (Xi, β
r)

are not linearly dependent across different βr in least squares estimation. Theorem 5 allows the case
limR→∞ ξmin(R) = 0 but this term drops out in the convergence rate if limR→∞ ξmin(R) > 0. The case
limR→∞ ξmin(R) = 0 means that ΨR, which is the probability limit (as N → ∞ with fixed R) of the
sample matrix

(
1
N

∑N
i=1

∑J
j=1 gj(xi, β

r)gj(xi, β
r′)
)

1≤r,r′≤R
, tends to be singular as R grows to infinity.

In this case, as often proposed in the literature (e.g. Hastie, Tibshirani, and Friedman 2009), we can
potentially reduce the variances of resulting estimators using a subset selection method or a shrinkage
method, such as LASSO and ridge/Tikhonov regression. On the other hand, these approaches can
cause additional bias in finite samples.

The previous theorem was for choice probabilities, but we are also interested in the distribution
function itself. Using the result in Theorem 5, we can approximate the distribution of heterogeneous
parameters with the following convergence rate.

Theorem 6. Suppose the assumptions and conditions in Theorem 5 hold. Then for a particular
constant C, w.p.a.1

∣∣∣F̂N (β)− F0 (β)
∣∣∣ ≤ C√ R(N)

ξmin(R(N))
max

{√
R(N) logR(N)

ξmin(R(N)) ·N
,R(N)−s/K

}
a.e. β ∈ B.

Not surprisingly, the bias term in this bound suggests that the estimator of the distribution function
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suffers from a curse of dimensionality in the number of heterogeneous parameters K and has a faster
rate of convergence if the true generating process is smoother, as indexed by s̄.

7.2 Continuous Distribution Function with Compact Support

Here we consider the asymptotics for the smooth density estimator proposed in Section 5.2. In this ap-
proach, we approximate the vector of choice probabilities P (xi) = (P1 (xi) , . . . , PJ (xi)) using smooth
basis functions as

P (xi) ≈
R∑
r=1

θr
∫
g(xi, β)dΦ(β | λr),

where Φ(β | λr) denotes the rth basis distribution function. We focus on simulation as the numerical
integration technique. Therefore,

P (xi) ≈
R∑
r=1

θr
∫
g(xi, β)dΦ(β | λr) ≈

R∑
r=1

θr

(
1

S

S∑
s=1

g(xi, β
r,s)

)
, (15)

where the (βr,s)Ss=1 are drawn from Φ(β | λr). We then can rewrite (15) as

P (xi) ≈
R∑
r=1

θr

(
1

S

S∑
s=1

g(xi, β
r,s)

)
=

R∑
r=1

S∑
s=1

θr

S
g(xi, β

r,s) =
R×S∑
r̃=1

θ̃r̃g(xi, β
r̃)

for some β r̃ and θ̃r̃. Therefore, we can interpret (15) as the discrete approximation of P (xi) with R ·S
grid points and R · (S − 1) restrictions such that the first group of S coefficients on the first group of
S regressors are identical to θ1

S , the second group of S coefficients on the second group of S regressors
are identical to θ2

S , and so on.
Therefore, the smooth mixture model can be nested in the discrete approximation case if the support

of β is bounded. To see this note that we have F̂N,S (β) ≡
∑R(N)

r=1 θ̂rSΦ(β | λr) and the simulation-
approximated distribution estimator by F̃N,S (β) ≡

∑R(N)
r=1 θ̂rS

1
S

∑S
s=1 1 [βr,s ≤ β] where θ̂S solves (12).

Then we can obtain∣∣∣F̂N,S (β)− F0(β)
∣∣∣ ≤ ∣∣∣F̂N,S (β)− F̃N,S(β)

∣∣∣+
∣∣∣F̃N,S (β)− F0(β)

∣∣∣
≤

R(N)∑
r=1

θ̂rS

∣∣∣∣∣ 1S
S∑
s=1

1 [βr,s ≤ β]− Φ(β | λr)

∣∣∣∣∣+
∣∣∣F̃N,S (β)− F0(β)

∣∣∣ p→ 0 (16)

as N →∞ and S →∞. The first term in (16) goes to zero because for any given r the empirical distri-
bution obtained from the simulation draws converges to the CDF of the draws (by the Glivenko–Cantelli
theorem) and the second term in (16) goes to zero because F̃N,S (β) can be seen exactly as our dis-
crete approximation estimator. We can also bound the convergence rate of the first term in (16) by
R(N)/

√
S. Note that the term

∣∣∣ 1√
S

∑S
s=1 {1 [βr,s ≤ β]− Φ(β | λr)}

∣∣∣ = OP∗(1) for each given λr by a
central limit theorem because βr,s are iid draws from Φ(β|λr) and E∗[1 [βr,s ≤ β]] = Φ(β|λr) for each
r, where E∗[·] denotes expectation and P∗ denotes probability measure with respect to the simulation
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draw. It follows that
∑R(N)

r=1 θ̂rS
1√
S

∣∣∣ 1√
S

∑S
s=1 {1 [βr,s ≤ β]− Φ(β | λr)}

∣∣∣ ≤ C ·R(N)/
√
S w.p.a.1, which

is the bound for the first term in (16). As discussed above, Theorem 6 gives the convergence rate of
the second term in (16), again because F̃N,S (β) can be seen exactly as our discrete approximation
estimator.

Of course, the approach of nesting the mixture of continuous densities into the discrete approx-
imation does not handle the full set of models allowed by the consistency theorem, Theorem 3. In
particular, mixtures of normals are not allowed. Future work could explore more general results for
the rate of convergence of the estimator using a mixture of continuous densities.

8 Conclusion

Previous papers have introduced fixed grid estimators for distributions of heterogeneity in structural
models. We explore the asymptotic properties of the nonparametric distribution estimators. We show
consistency in the function space of all distributions under the weak topology by viewing our estimators
as sieve estimators and verifying high-level conditions in Chen and Pouzo (2012). We also show
consistency for i) a model with homogenous parameters and ii) an estimator based on a mixture over
smooth basis distribution functions on possibly unbounded supports. We verify some of the conditions
for consistency for three example discrete choice models, each of which is widely used in empirical
work. We also derive the convergence rates of the least squares nonparametric estimator for a class
of differentiable models, for which we can derive the approximation error rates of our nonparametric
sieve space.
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A Well-posedness

Chen (2007) and Carrasco, Florens and Renault (2007) distinguish between functional (here the distri-
bution) optimization and identification problems that are well-posed and problems that are ill-posed.
Using Chen’s definition, the optimization problem of maximizing the population criterion function
Q (F ) with respect to the distribution function F will be well-posed if dLP(Fn, F0) → 0 for all se-
quences {Fn} in F such that Q(Fn) − Q(F0) → 0. The problem will be ill-posed if there exists a
sequence {Fn} in F such that Q(Fn) − Q(F0) → 0 but dLP(Fn, F0) 9 0.6 We now argue that our
problem is well-posed.

Note that F is compact in the weak topology (Assumption 1.1). Also, Q (F ) is continuous on F by
Assumption 1.5. It follows that with our choice of the criterion function and metric, our optimization
problem is well posed in the sense of Chen (2007) because for every ε > 0 we have

inf
F∈FR(N):dLP(F,F0)≥ε

(Q(F )−Q(F0)) ≥ inf
F∈F :dLP(F,F0)≥ε

(Q(F )−Q(F0)) > 0, (17)

where the first inequality holds because FR(N) ⊂ F by construction and the second, strict inequality
holds as the minimum is attained by continuity and compactness and because the model is identified
(Assumption 1.4), as we argue in the proof of Theorem 1. Therefore, our optimization problem satisfies
Chen’s definition of well-posedness.

B Proofs of Consistency

B.1 Proofs of Theorems 1 and 2

We provide proof of the consistency theorem for models with homogenous parameters because the
essentially same proof can be applied to the models without homogeneous parameters.

We verify the conditions of CP’s Lemma A.2 (also see Theorem 3.1 in Chen (2007)) in our con-
sistency proof. To provide completeness, we first present our simplified version of CP’s Lemma A.2,
which does not incorporate a penalty function. We let α = (γ, F ) ∈ A ≡ Γ× F , AR(N) ≡ Γ× FR(N),
and with possible abuse of notation dLP(α1, α2) ≡ ‖γ1 − γ2‖E + dLP(F1, F2) for α1, α2 ∈ A. Define
Q̂N (α) = 1

NJ

∑N
i=1

∥∥yi − ∫ g (xi, β, γ) dF
∥∥2

E
and Q(α) ≡ E

[∥∥y − ∫ g (x, β, γ) dF
∥∥2

E
/J
]
.

Lemma 2. Lemma A.2 of CP: Let α̂N = (γ̂, F̂N ) be such that Q̂N (α̂N ) ≤ infα∈AR(N)
Q̂N (α) +

Op(νN ) with νN → 0. Suppose the following conditions (B.2.1)–(B.2.4) hold:

• (B.2.1) (i) Q(α0) < ∞; (ii) there is a positive function δ(N,R(N), ε) such that for each N ≥ 1,
R ≥ 1, and ε > 0, infα∈AR(N):dLP (α,α0)≥εQ(α)−Q(α0) ≥ δ (N,R(N), ε) and lim infN→∞ δ (N,R(N), ε) ≥
0 for all ε > 0.

• (B.2.2) (i) (A, dLP(·)) is a metric space; (ii) AR ⊆ AR+1 ⊆ A for all R ≥ 1, and there exists a
sequence ΠNα0 ∈ αR(N) such that dLP (ΠNα0, α0)→ 0.

6Whether the problem is well-posed or ill-posed also depends on the choice of the metric. For example, if one uses
the total variation distance metric instead of the the Lévy-Prokhorov metric, the problem will be ill-posed because the
distance between a continuous distribution and any discrete distribution will always be equal to one in the total variation
metric.
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• (B.2.3) (i) Q̂N (α) is a measurable function of the data ((yi, xi))
N
i=1 for all α ∈ AR(N); (ii) α̂N is

well-defined and measurable with respect to the Borel σ-field generated by the topology induced
by the metric dLP(·, ·).

• (B.2.4) (i) Let ĉQ(R(N)) = supα∈AR(N)

∣∣∣Q̂N (α)−Q(α)
∣∣∣ p→ 0;

(ii) max
{
ĉQ(R(N)), νN , |Q (ΠNα0)−Q (α0)|

}
/δ (N,R(N), ε)

p→ 0 for all ε > 0.

Then dLP(α̂N , α0)
p→ 0.

Using Lemma 2 we now provide our consistency proof for the least squares estimator. Because
our estimator is an extremum estimator, we can take νN to be arbitrarily small. We start with the
condition (B.2.1). The condition Q(α0) < ∞ holds because Q(α) ≤ 1 for all α ∈ A, because we have
a linear probability model. Next we will verify the condition

inf
a∈AR(N):dLP(α,α0)≥ε

Q(α)−Q(α0) ≥ δ(N,R(N), ε) > 0 (18)

for each N ≥ 1, R(N) ≥ 1, ε > 0, and some positive function δ(N,R(N), ε) to be defined below. We
will use our assumption of identification (Assumption 1.4). Let m (x, α) = P (x, α0)− P (x, α), where
P (x, α) =

∫
gj (x, β, γ) dF (β). Note that we have

Q(α) = E
[
||y − P (x, α0) +m(x, α)||2E/J

]
= E

[
||y − P (x, α0)||2E/J

]
+ E

[
||m(x, α)||2E/J

]
(19)

because E[(y − P (x, α0))′m(x, α)] = 0 by the law of iterated expectation and E[y − P (x, α0) | x] = 0.
Therefore, for each α ∈ A, we have

Q(α)−Q(α0) = E
[
||m(x, α)||2E/J

]
− E

[
||m(x, α0)||2E/J

]
= E

[
||m(x, α)||2E/J

]
(20)

because m(x, α0) = 0. The condition (18) now holds due to our assumption of identification, as the
following argument shows.

Consider E[||m (x, α) ||2E ], with m (x, α) defined above, as a map from A to R+ ∪ {0}. For any
α 6= α0, E[||m (x, α) ||2E ] takes on positive values for each α ∈ A, because the model is identified on a
set X̃ with positive probability. Then note that E[||m (x, α) ||2E ] is continuous in α and also note that
AR(N) is compact. Therefore E[||m (x, α) ||2E ] attains some strictly positive minimum on {α ∈ AR(N) :

dLP(α, α0) ≥ ε}. Then we can take δ(N,R(N), ε) = infα∈AR(N):dLP(α,α0)≥εE
[
||m(x, α)||2E/J

]
> 0 for

all R(N) ≥ 1 with ε > 0.

We have shown that δ(N,R(N), ε) > 0 for all N and hence lim infN→∞ δ(N,R(N), ε) ≥ 0. This is
enough for (B.2.1). However, under our assumptions indeed lim infN→∞ δ(N,R(N), ε) > 0 because

δ(N,R(N), ε) = inf
α∈AR(N):dLP(α,α0)≥ε

(Q(α)−Q(α0)) ≥ inf
α∈A:dLP(α,α0)≥ε

(Q(α)−Q(α0))

= inf
α∈A:dLP(α,α0)≥ε

E[||m (x, α) ||2E/J ] > 0,

where the first inequality holds because AR(N) ⊆ A by construction and the second, strict inequality
holds because the model is identified (Assumption 1.4). Here, lim infN→∞ δ(N,R(N), ε) > 0 holds
because the last term in the right-hand side of the above inequality does not depend on N and the
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term is strictly positive.7 This result makes it convenient to verify (B.2.4)(ii) below.
Next we consider (B.2.2). First note that (A, dLP) is a metric space and we have AR ⊆ AR+1 ⊆ A

for all R ≥ 1 by construction of our sieve space. Then we claim that there exists a sequence of
functions ΠNα0 ∈ AR(N) such that dLP(ΠNα0, α0)→ 0 as N →∞. First, BR(N) becomes dense in B
by assumption. Second, AR(N) becomes dense in A because the set of distributions FR(N) on a dense
subset BR(N) ⊂ B is itself dense. To see this, remember that the class of all distributions with finite
support is dense in the class of all distributions (Aliprantis and Border 2006, Theorem 15.10). Any
distribution with finite support can be approximated using a finite support in a dense subset BR(N)

(Huber 2004).
Next we consider (B.2.3). As Theorem 1 is a special case of Theorem 2, we focus explicitly on

Theorem 2. Consider first Assumption 2.5.a. Remark A.1.(1) (a) of CP says that (B.2.3) holds if each
sieve space AR is compact and the finite-sample objective function is lower semicontinuous in (γ, F ).
First note that FR is a compact subset of F for each R because BR is a compact subset of B and hence
AR is also a compact subset of A.8 Second we show that for any data ((yi, xi))

N
i=1, Q̂N (α) is continuous

on AR for each R ≥ 1. Since AR is compact, this continuity means our estimator is well defined as the
minimum in (6). Because checking the continuity in γ is trivial for given models (e.g. logit model), we
focus on the continuity on FR. For any F1, F2 ∈ FR(N), applying the triangle inequality, we obtain

∣∣∣Q̂N (γ, F1)− Q̂N (γ, F2)
∣∣∣ ≤ 2

∑N

i=1

∑J

j=1
yi,j

∣∣∣∣∫ gj(xi, β, γ)(dF1 − dF2)

∣∣∣∣ /NJ (21)

+
∑N

i=1

∑J

j=1

{∫
gj(xi, β, γ)(dF1 + dF2)

} ∣∣∣∣∫ gj(xi, β, γ)(dF1 − dF2)

∣∣∣∣ /NJ
≤ 4

∑N

i=1

∑J

j=1

∣∣∣∣∫ gj(xi, β, γ)(dF1 − dF2)

∣∣∣∣ /NJ,
where the second inequality holds because yi,j , gj(xi, β, γ), and

∫
gj(xi, β, γ)dF (β) are uniformly

bounded by 1 for all j and xi. Then because gj(xi, β, γ) is uniformly bounded by 1 and F1 and
F2 are discrete distributions with the finite support BR, in this case the weak convergence implies that
almost surely Q̂N (γ, F ) is continuous on FR, i.e. for any F1, F2 ∈ FR such that dLP (F1, F2) → 0, it
follows that |Q̂N (γ, F1) − Q̂N (γ, F2)| → 0 almost surely.9 Therefore (B.2.3) holds by Remark A.1.(1)
(a) of CP.

7As we discussed in the main text the space F of distributions on B is compact in the weak topology because we
assume B itself is compact.

8Alternatively we can also see that FR is compact because the simplex, ∆R(N), itself is compact as we argue below.
For any given R and BR, consider two metric spaces, (FR, dLP) and (∆R, || · ||E). Then we can define a continuous map
ψ : ∆R → FR because any element in ∆R determines an element in FR. The map is continuous in the sense that for
any sequence θn → θ in ∆R we have ψ(θn)→ ψ(θ) in FR. Then it is a simple proof to show that if ∆R is compact, then
FR = {ψ(θ) : θ ∈ ∆R} is also compact.

Proof. Consider an arbitrary sequence {Fn}n∈N ⊆ FR. Since Fn ∈ {ψ(θ) : θ ∈ ∆R} for all n ∈ N, we know that there
exists θn ∈ ∆R with ψ(θn) = Fn for all n ∈ N. Then {θn}n∈N ⊆ ∆R. Next note that since ∆R is compact, there exists
some subsequence {θln}n∈N with θln → θ̄ ∈ ∆R. Since the map ψ is continuous, it follows that ψ(θln) → ψ(θ̄). And
because ψ(θln) = Fln , then Fln → ψ(θ̄) ∈ FR because θ̄ ∈ ∆R. Therefore, we conclude FR is also compact when ∆R is
compact.

9Note that
∣∣∫ gj(xi, β)(dF1 − dF2)

∣∣ ≤∑R
r=1 |θ

r
1 − θr2| → 0 as dLP (F1, F2)→ 0 for any finite R.
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For the case of Assumption 2.5.b, we directly assume (B.2.3) for the reasons stated in Remark 8.
Next there are two conditions to verify in (B.2.4). We first focus on the uniform convergence of the

sample criterion function in (B.2.4). Here we need to verify the uniform convergence over AR(N) such
that

sup
(γ,F )∈Γ×FR(N)

∣∣∣Q̂N (γ, F )−Q(γ, F )
∣∣∣ p→ 0. (22)

For this purpose, it is convenient to view Q̂N (γ, F ) and Q(γ, F ) as functions of γ and θ ∈ ∆R(N)

and write them as Q̂N (γ, θ) and Q(γ, θ), respectively. Then define, for any R, the class of measurable
functions

G̃R =

l(y, x, θ, γ) =

∥∥∥∥∥y −∑
r

θrg(x, βr, γ)

∥∥∥∥∥
2

E

/J : (γ, θ) ∈ Γ×∆R


and note that Q̂N (γ, θ) = N−1

∑N
i=1 l(yi, xi, θ, γ). Then again by Pollard (1984, Theorem II.24), the

uniform convergence (22) holds if and only if the entropy satisfies logN(ε, G̃R, || · ||L1,N ) = op(N) for
all ε > 0. Note that the entropy measure of G̃R is bounded by the sum of two entropies, one associated
with FR(N) and the other one associated with Γ. Below we show that the former is op(N). We also
note that the latter satisfies the entropy condition (and so is op(N)) under Assumption 2.5a-2.5b by
Theorem 2.7.11 of van der Vaart and Wellner (1996) for the Lipschitz case and because the class of
indicator functions belongs to the Vapnik-Červonenkis class and has a uniformly bounded entropy
(Theorem 2.6.7 of van der Vaart and Wellner 1996).

Now we verify the entropy condition associated with FR(N). Let ∆R(N) be the R (N) unit simplex.
Using measures of complexity of spaces, let N(ε, T , || · ||) denote the covering number of the set T with
balls of radius ε with an arbitrary norm || · || and let N[](ε, T , ‖·‖) denote the bracketing number of
the set T with ε-brackets. For ease of notation, below we suppress γ (the result holds for any given
γ ∈ Γ) and define for any R, the class of measurable functions

GR =

{
l(y, x, θ) = ||y −

∑
r

θrg(x, βr)||2E/J : θ ∈ ∆R

}
. (23)

Note (i) Q̂N (θ) = N−1
∑N

i=1 l(yi, xi, θ), (ii) {(yi, xi)}
N
i=1 are i.i.d., and (iii) E[supθ∈∆R(N)

|l(y, x, θ)|] ≤
1 <∞. Then by Pollard (1984, Theorem II.24) (also see Chen (2007, Section 3.1, page 5592) for related
discussion), the entropy condition to satisfy becomes logN(ε,GR, || · ||L1,N )/N

p→ 0 for all ε > 0, where
|| · ||L1,N denotes the L1(PN )-norm and PN denotes the empirical measure of the data ((yi, xi))

N
i=1.

The term l(y, x, θ) is Lipschitz in θ, as

|l(y, x, θ1)− l(y, x, θ2)| ≤ 1

J

J∑
j=1

(
2yj
∑
r

gj(x, β
r)|θr1 − θr2|+

∑
r

gj(x, β
r)(θr1 + θr2)

∑
r

gj(x, β
r)|θr1 − θr2|

)

≤ M(·)
∑R

r=1
|θr1 − θr2| ≤M(·)

√
R||θ1 − θ2||E

with some function E[M(·)2] < ∞. The first inequality is obtained by the triangle inequality and
the third inequality holds due to the Cauchy-Schwarz inequality. We also know ∆R is a compact
subset of RR. Now take M(·) = 4, noting that yj , gj(·), and

∑R
r=1 gj(x, β

r)θr are uniformly bounded
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by 1. Then from Theorem 2.7.11 of van der Vaart and Wellner (1996), we have N[] (2ε,GR, ‖·‖) ≤

N
(

ε
4
√
R
,∆R, ‖·‖E

)
=
(

4
√
R
ε

)R
for any norm ‖·‖. Therefore as long as R(N) logR(N)/N → 0, the

entropy condition associated with FR(N) holds because N
(
ε,GR, ‖·‖L1,N

)
≤ N[]

(
2ε,GR, ‖·‖L1,N

)
≤(

4
√
R
ε

)R
(van der Vaart and Wellner 1996, page 84).

To satisfy the second condition in (B.2.4), we need to bound all three terms in the max{·} func-
tion. We have shown the uniform convergence of the sample criterion function (this also satisfies
(B.2.4) (i)) and we can take νN to be small enough. We also have |Q(ΠNα0) − Q(α0)| → 0, which
is trivially satisfied by the continuity of Q(α) at α0 and dLP (ΠNα0, α0) → 0. Therefore because
lim infN→∞ δ (N,R(N), ε) > 0, the condition (B.2.4) (ii) is satisfied.

We have verified all the conditions in Lemma 2 (Lemma A.2 of CP) and this completes the consis-
tency proof.

B.2 Proof of Corollary 1

Similarly to the baseline least squares estimator, using Lemma 2 we show the consistency of the ML
estimator. For ease of notation, we consider the model with heterogeneous parameters only. The
following proof is parallel to the least squares case.

We start with (B.2.1). First, the condition Q(F0) <∞ holds under the assumption that Pj(x, F0)

is bounded away from zero for all j ≤ J . Similarly to the least squares case, next we show that for
ε > 0

lim inf
F∈FR(N):dLP(F,F0)≥ε

Q(F )−Q(F0) > 0. (24)

Note that for any F 6= F0, we have

Q(F )−Q(F0) = −

E
 J∑
j=1

yj logPj(x, F )

− E
 J∑
j=1

yj logPj(x, F0)

 (25)

= −E

log

 J∏
j=1

Pj(x, F )/Pj(x, F0)yj


> − log

E
 J∏
j=1

(Pj(x, F )/Pj(x, F0)) yj

 = − log

E
 J∑
j=1

Pj(x, F )

 = 0,

where the inequality holds by Jensen’s inequality. Here the strict inequality holds because P (x, F0) 6=
P (x, F ) with positive probability for any F 6= F0 (Assumption 1.4). The third equality holds by the law
of iterated expectation and Pr[yj = 1|x] = Pj(x, F0). The last result holds because

∑J
j=1 Pj(x, F ) = 1

by construction. Therefore, (24) is satisfied because (25) holds for any F ∈ F such that dLP(F, F0) ≥ ε,
by essentially the same argument for the least squares case.

Next, (B.2.2) holds by the same argument for the proof of the least squares estimator.
Next, we show (B.2.3) holds. We use Remark A.1.(i)(a) of CP. First note that FR is a compact

subset of F for each R because BR is a compact subset of B. Second we need to show for any data
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((yi, xi))
N
i=1, Q̂N (F ) is continuous on FR for each R ≥ 1. Using the inequality that for 0 < c ≤ a, b,

| log a− log b| ≤ |a− b|/c, we obtain for some constant C

∣∣∣Q̂N (F1)− Q̂N (F2)
∣∣∣ ≤ ∑N

i=1

J∑
j=1

yi,j |logPj(xi, F1)− logPj(xi, F2)| /N

≤ C
∑N

i=1

J∑
j=1

yi,j |Pj(xi, F1)− Pj(xi, F2)| /N

= C
∑N

i=1

J∑
j=1

yi,j

∣∣∣∣∫ gj(xi, β)(dF1 − dF2)

∣∣∣∣ /N
and therefore (B.2.3) holds by the essentially same argument to the proof of the least squares case (see
the discussion below (21)).

Next there are two conditions to verify in (B.2.4). We first focus on the uniform convergence of the
sample criterion function. Here we need to verify the uniform convergence over FR(N) such that

sup
F∈FR(N)

∣∣∣Q̂N (F )−Q(F )
∣∣∣ p→ 0. (26)

For this purpose, it is convenient to view Q̂N (F ) and Q(F ) as functions of θ ∈ ∆R(N) and write them
as Q̂N (θ) and Q(θ), respectively. Then define, for any R, the class of measurable functions

GML
R =

l(y, x, θ) =

J∑
j=1

yj log

(∑
r

θrgj(x, β
r)

)
: θ ∈ ∆R

 . (27)

Note (i) Q̂N (θ) = −N−1
∑N

i=1 l(yi, xi, θ), (ii) ((yi, xi))
N
i=1 are i.i.d., and (iii)E

[
supθ∈∆R(N)

|l(y, x, θ)|
]
<

∞. Then by Pollard (1984, Theorem II.24) (also see Chen (2007, Section 3.1, page 5592) for related
discussion), the entropy condition becomes logN(ε,GML

R , || · ||L1,N )/N
p→ 0 for all ε > 0. Using the

inequality that for 0 < c ≤ a, b, | log a− log b| ≤ |a− b|/c, we obtain for some constant C

|l(y, x, θ1)− l(y, x, θ2)| =

∣∣∣∣∣∣
J∑
j=1

yj

{
log

(∑
r

θr1gj(x, β
r)

)
− log

(∑
r

θr2gj(x, β
r)

)}∣∣∣∣∣∣
≤ C

J∑
j=1

yj

∣∣∣∣∣∑
r

θr1gj(x, β
r)−

∑
r

θr2gj(x, β
r)

∣∣∣∣∣
≤ C

J∑
j=1

yj

{∑
r

gj(x, β
r) |θr1 − θr2|

}
≤M(·)

∑R

r=1
|θr1 − θr2| ≤M(·)

√
R||θ1 − θ2||E

with some function E[M(·)2] < ∞. Therefore, the first condition in (B.2.4) holds by the essentially
same argument to the proof of the least squares case. Finally, the second condition in (B.2.4) also
holds by the essentially same argument to the proof of the least squares case. We have verified all the
conditions in Lemma 2 (Lemma A.2 of CP) for the ML estimator.
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B.3 Proof of Theorem 3

We can prove Theorem 3 by verifying conditions (B.2.1)–(B.2.4) in Lemma 2, just as in the proof of The-
orem 1. Observe that (B.2.1)–(B.2.2) are clearly satisfied because the arguments that (B.2.1)–(B.2.2)
are satisfied within the proof of Theorem 1 follow almost exactly if we replace g(x, βr), FR, F , and
Q(F ) with g̃(x, λr), Pλ,R, Pλ, and Q(Pλ). The verification of (B.2.3) also follows the arguments in
the proof of Theorem 1, instead using Q̂N (Pλ) and ΛR. Condition (B.2.4), regarding the uniform
convergence of Q̂N (Pλ) to Q(Pλ), is satisfied by invoking the same arguments as in the proof Theorem
1, using Q̂N (Pλ) and Q(Pλ). Other arguments are also essentially identical to Theorem 1. Therefore
dLP

(
P̂λ,N , Pλ,0

)
p→ 0, which also implies dLP

(
F̂N , F0

)
p→ 0 because we assume F0 ∈ FM and because

F =
∫

Φ(·|λ)dPλ(dλ) is continuous on Pλ in the Lévy-Prokhorov metric. We omit a complete proof of
Theorem 3 to eliminate redundancy.

B.4 Proof of Theorem 4

Define g̃S(x, λr) = 1
S

∑S
s=1 g(x, βr,s) where βr,s are drawn from Φ(β|λr) and define Q̂N,S(Pλ) =

N−1
∑N

i=1

∥∥yi −∑r θ
rg̃S(xi, λ

r)
∥∥2

E
/J . Then define the estimator of Pλ,0 as

P̂λ,N,S = argminPλ∈Pλ,R(N)
Q̂N,S(Pλ) + C · νN (28)

with some tolerance of minimization, C · νN , that tends to zero (if this is necessary).
We prove the consistency by verifying conditions in Lemma 2 for the simulated distribution func-

tion estimator. Note that (B.2.1)–(B.2.2) are clearly satisfied because the proofs of (B.2.1)-(B.2.2)
in Theorem 1 hold by replacing g(x, βr), FR , F , and Q(F ) with g̃S(x, λr), Pλ,R, Pλ, and Q(Pλ),
respectively, when necessary. We focus on (B.2.3) and (B.2.4).

To show (B.2.3) holds, we use Remark A.1.(i)(a) of CP. First note that Pλ,R is a compact subset
of Pλ for each R because ΛR is a compact subset of Λ. Second we need to show that for any data
((yi, xi))

N
i=1, Q̂N,S(Pλ) is continuous on Pλ,R for each R ≥ 1. Since Pλ,R is compact, this continuity

means our estimator is well defined as the minimum in (28). Note
∫
g̃S (x, λ) dPλ,l =

∑R
r=1 θ

r
l g̃
S (x, λr)

for Pλ,l ∈ Pλ,R, l = 1, 2. Then, for any Pλ,1, Pλ,2 ∈ Pλ,R(N), applying the triangle inequality, we obtain

∣∣∣Q̂N,S(Pλ,1)− Q̂N,S(Pλ,2)
∣∣∣ ≤ 2

∑N

i=1

∑J

j=1
yi,j

∣∣∣∣∫ g̃Sj (xi, λ)(dPλ,1 − dPλ,2)

∣∣∣∣ /NJ
+

∑N

i=1

∑J

j=1

{∫
g̃Sj (xi, λ)(dPλ,1 + dPλ,2)

} ∣∣∣∣∫ g̃Sj (xi, λ)(dPλ,1 − dPλ,2)

∣∣∣∣ /NJ
≤ 4

∑N

i=1

∑J

j=1

∣∣∣∣∫ g̃Sj (xi, λ)(dPλ,1 − dPλ,2)

∣∣∣∣ /NJ,
where the second inequality holds because yi,j , g̃Sj (xi, λ), and

∫
g̃Sj (xi, λ)dPλ are uniformly bounded

by 1 for all j and xi. Then because g̃Sj (xi, λ) is uniformly bounded by 1 and Pλ,1 and Pλ,2 are discrete
distributions with the finite support ΛR, weak convergence implies that almost surely Q̂N,S(Pλ) is
continuous on Pλ,R, i.e. for any Pλ,1, Pλ,2 ∈ Pλ,R such that dLP (Pλ,1, Pλ,2) → 0, it follows that
|Q̂N,S(Pλ,1) − Q̂N,S(Pλ,2)| → 0 almost surely. Therefore, by Remark A.1.(i) (a) of CP, (B.2.3) holds
with simulated basis functions with any S.
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Next we verify (B.2.4). (B.2.4) (ii) is clearly satisfied as in Theorem 1. We focus on (B.2.4) (i): the
uniform convergence of Q̂N,S(Pλ) to Q(Pλ) for Pλ ∈ Pλ,R(N), supPλ∈Pλ,R(N)

|Q̂N,S(Pλ)−Q(Pλ)| p→ 0. As
in Theorem 1 it is convenient to view Q̂N,S(Pλ) and Q(Pλ) for Pλ ∈ Pλ,R(N) as functions of θ ∈ ∆R(N)

and then write them as Q̂N,S(θ) and Q(θ), respectively. Then the uniform convergence condition to
verify becomes

sup
θ∈∆R(N)

∣∣∣Q̂N,S(θ)−Q(θ)
∣∣∣ p→ 0. (29)

Define, for any S, QS(θ) ≡ E
[∥∥yi −∑r θ

rg̃S (xi, λ
r)
∥∥2

E
/J
]
, where the expectation is taken with

respect to (yi, xi) while fixing the simulation draws in g̃S (xi, λ
r). We first show that

sup
θ∈∆R(N)

∣∣∣Q̂N,S(θ)−QS(θ)
∣∣∣ p→ 0.

Later we show supθ∈∆R(N)
|QS(θ)−Q(θ)| p→ 0; therefore invoking the triangle inequality we obtain

(29).
For any R define the class of measurable functions

GR,S =

l(y, x, θ) =

∥∥∥∥∥y −∑
r

θrg̃S(x, λr)

∥∥∥∥∥
2

E

/J : θ ∈ ∆R

 .

Note (i) Q̂N,S(θ) = N−1
∑N

i=1 l(yi, xi, θ), (ii) {(yi, xi)}
N
i=1 are i.i.d., and (iii) E[supθ∈∆R(N)

|l(y, x, θ)|] ≤
1 < ∞. Then by Pollard (1984, Theorem II.24) (also see Chen (2007, Section 3.1, page 5592) for
related discussion), the uniform convergence (29) holds if and only if logN(ε,GR,S , || · ||L1,N )/N

p→ 0

for all ε > 0, where || · ||L1,N denotes the L1(PN )-norm and PN denotes the empirical measure of the
data {(yi, xi)}Ni=1. Then following the same steps in the proof of Theorem 1, we conclude as long as
R(N) logR(N)/N → 0, the uniform convergence of Q̂N,S(θ) to QS(θ) holds for any given S.

Next we show supθ∈∆R(N)
|QS(θ) − Q(θ)| p→ 0 in P∗ where P∗ denotes probability measure w.r.t.
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the simulation draws. Consider that

|QS(θ)−Q(θ)|

= E

∥∥∥∥∥yi −∑
r

θrg̃S(xi, λ
r)

∥∥∥∥∥
2

E

−

∥∥∥∥∥yi −∑
r

θrg̃(xi, λ
r)

∥∥∥∥∥
2

E


≤ J−1

J∑
j=1

E

∣∣∣∣∣∣
(
yi,j −

∑
r

θrg̃Sj (xi, λ
r)

)2

−

(
yi,j −

∑
r

θrg̃j(xi, λ
r)

)2
∣∣∣∣∣∣


≤ J−1
J∑
j=1

E

[∣∣∣∣∣
(

2yi,j −
∑
r

θrg̃Sj (xi, λ
r)−

∑
r

θrg̃j(xi, λ
r)

)(∑
r

θrg̃Sj (xi, λ
r)−

∑
r

θrg̃j(xi, λ
r)

)∣∣∣∣∣
]

≤ 2J−1
J∑
j=1

E

[∣∣∣∣∣∑
r

θrg̃Sj (xi, λ
r)−

∑
r

θrg̃j(xi, λ
r)

∣∣∣∣∣
]

≤ 2J−1
J∑
j=1

∑
r

θrE
[∣∣g̃Sj (xi, λ

r)− g̃j(xi, λr)
∣∣]

≤ 2J−1
J∑
j=1

∑
r

θr max
r
E

[∣∣∣∣∣ 1S
S∑
s=1

{
gj(xi, β

r,s)−
∫
gj(xi, β)dΦ(β|λr)

}∣∣∣∣∣
]

= oP∗(1),

where the third inequality holds because 0 <
∑

r θ
rg̃Sj (xi, λ

r) ≤ 1 and 0 <
∑

r θ
rg̃j(xi, λ

r) ≤ 1 and
the last result holds because

∑R
r=1 θ

r = 1 and βr,s are iid draws from Φ(β|λr), so E∗[gj(x, βr,s)] =∫
gj(x, β)dΦ(β|λr) < ∞ for each r and we applied a LLN to the term inside the | · | bracket for each

r, which holds for any x ∈ X . Note that the convergence of the partial sum inside the | · | bracket is
independent of r because we use S simulation draws independently drawn for each λr.

Here E∗[·] denotes expectation w.r.t. the simulation draw. Note that the above oP∗(1) result does
not depend on θ and therefore we also have supθ∈∆R(N)

|QS(θ)−Q(θ)| p→ 0. Then invoking the triangle
inequality we obtain the uniform convergence in (29).

We have verified all the conditions in Lemma 2 (Lemma A.2 of CP) and therefore showed that P̂λ,N,S
is a consistent estimator for Pλ,0. This in turn implies the consistency of F̂N,S =

∫
Φ(·|λ)P̂λ,N,S(dλ)

to F0 =
∫

Φ(·|λ)Pλ,0(dλ) because Φ(β|λ) is continuous in λ for all β and thus F =
∫

Φ(·|λ)dPλ(dλ) is
also continuous on Pλ in the Lévy-Prokhorov metric.

C Proofs for Asymptotic Bounds Results

We let C, C1, C2, . . . denote generic positive constants. We use diag (A) to denote a diagonal matrix
composed of diagonal elements of a matrix A. We often use the following inequality (denoted by RCS

for the Cauchy-Schwarz inequality for R terms in a sum):
∑R

r=1Wr ≤
√
R
√∑R

r=1W
2
r for a sequence

Wr’s. We note ‖P (x, F0)‖∞ ≤ ζ0 and ‖g (x, βr)‖∞ ≤ ζ0 for some constant ζ0 > 0 uniformly over
r ≤ R(N) because probabilities are bounded by one. We also note for some c0 > 0, ‖g(x, βr)‖L2

≥ c0

uniformly over r ≤ R(N) because X , the support of X, has positive measure and the support of β is
bounded. We first present preliminary lemmas that are useful to prove Theorem 5 and Theorem 6.
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We define ΨN,R =
(

1
N

∑N
i=1

∑J
j=1 gj(xi, β

r)gj(xi, β
r′)
)

1≤r,r′≤R
(a R×R matrix).

Lemma 3. Suppose X has positive measure and Assumption 4(i)-(iii) hold. Then

min
{

Pr
{
||g (·, βr) ||2L2,N

≤ 2||g(·, βr)||2L2
, ∀r

}
,Pr

{
||g(·, βr)||L2 ≤ 2||g(·, βr)||L2,N

, ∀r
}}
≥

1−R exp
(
−C1Nc

4
0/ζ

4
0

)
.

Proof. The claim follows from the union bound applied to the r-specific events and Hoeffding’s in-
equality.

Lemma 3 implies that diag (ΨN,R) ≤ 2diag (ΨR) holds with probability approaching one (w.p.a.1)
because ‖g (·, βr)‖2L2,N

’s are diagonal elements of ΨN,R and ‖g (·, βr)‖2L2
’s are diagonal elements of ΨR.

The purpose of the following Lemma 4 is to show that ΨN,R ≥ ΨR/2 holds w.p.a.1.

Lemma 4. Let G = span{g(·, β1), . . . , g(·, βR)} be the linear space spanned by functions g(·, β1), . . . , g(·, βR).
Suppose Assumptions 4 (i)-(iii) hold. Then Pr

{
supµ∈G\{0}(‖µ‖

2
L2
/ ‖µ‖2L2,N

) > 2
}
≤ R2 exp

(
−C2N/(ζ

4
0R

2)
)
.

Proof. Let φ1, . . . , φM be an orthonormal basis of G in L2($) with M ≤ R. Also let ρ(D) denote the
following quantity for a symmetric matrix D: ρ(D) = sup

∑
l |al|

∑
l′ |al′ |

∣∣Dl,l′
∣∣ , where the sup is taken

over sequences {al}Ml=1 with
∑M

l=1 a
2
l = 1. Then, following Lemma 5.2 in Baraud (2002), we have

Pr

{
sup

µ∈G\{0}

‖µ‖2L2

‖µ‖2L2,N

> c

}
≤M2 exp

(
−N ($0 − c−1)2

4$1 max
{
ρ2 (A) , ρ (B)

}) (30)

where Al,l′ =
√
E[||φl||2E ||φl′ ||2E ] and Bl,l′ =

∥∥∥∥φl∥∥E∥∥φl′∥∥E∥∥∞ for l, l′ = 1, . . . ,M and $0 and $1

denote the lower bound and upper bound of the density of X, respectively. We find
∣∣Al,l′∣∣ ≤ ζ2

0 and∣∣Bl,l′∣∣ ≤ ζ2
0 . It follows that

ρ(A) ≤ ζ2
0 sup

∑
l
|al|
∑

l′
|al′ | = ζ2

0 sup
(∑

l
|al|
)2
≤ ζ2

0 supM
∑

l
|al|2 = ζ2

0M ≤ ζ2
0R

where (
∑

l |al|)
2 ≤M

∑
l |al|

2 holds by the Cauchy-Schwarz inequality. Similarly we have ρ(B) ≤ ζ2
0R.

The conclusion follows from (30) and M ≤ R.

Now define an event E0 =
{

ΨN,R −
(
ξmin(R)/4ζ2

0

)
diag(ΨN,R) ≥ 0

}
.

Lemma 5. Suppose X has positive measure and Assumption 4(i)-(iii) hold. Then,
Pr{E0} ≥ 1−R exp

(
−C1Nc

4
0/ζ

4
0

)
−R2 exp

(
−C2N/ζ

4
0R

2
)

Proof. First, note that ΨR − (ξmin(R)/ζ2
0 )diag (ΨR) ≥ 0. Now let G be the linear space spanned by

g(·, β1), . . . , g(·, βR). Now note that, under the eventA =
{
||g(·, βr)||2L2,N

≤ 2||g(·, βr)||2L2
∀r = 1, . . . , R

}
,

we have diag(ΨN,R) ≤ 2diag(ΨR). Also, under the event B =
{

supµ∈G\{0}

(
‖µ‖2L2

/ ‖µ‖2L2,N

)
≤ 2
}
,

we have ΨN,R ≥ ΨR/2. Therefore, under the intersection of the two events, A and B, we have

ΨN,R − ξmin(R)diag (ΨN,R) /(4ζ2
0 ) ≥ ΨR/2− 2ξmin(R)diag (ΨR) /(4ζ2

0 ) ≥ 0,
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or event E0. Then by Lemma 3 and Lemma 4, we find 1 − Pr{E0} ≤ R · exp
(
−C1Nc

4
0/ζ

4
0

)
+ R2 ·

exp
(
−C2N/ζ

4
0R

2
)
because Pr{Ec0} ≤ Pr{Ac ∪Bc} ≤ Pr{Ac}+ Pr{Bc}.

Lemma 6. Suppose X has positive measure and Assumption 4(i)-(iii) hold. Then, for given positive
sequence ηN

Pr
{∣∣∣∑

i
e′ig(Xi, β

r)/N
∣∣∣ ≤ ηN ||g(·, βr)||L2,N

for all r = 1, . . . , R
}

≥ 1−R · exp
(
−CNη2

Nc
2
0/ζ

2
0

)
−R · exp

(
−C1Nc

4
0/ζ

4
0

)
.

Proof. Hoeffding (1963)’s inequality implies that

EX

[
Pr
{∣∣∣∑

i
e′ig(Xi, β

r)/N
∣∣∣ ≥ ηN ||g(·, βr)||L2,N

, ∀r ≤ R |X1, . . . , XN

}]
(31)

≤ EX

[∑
r

exp
(
−2Nη2

N ||g(·, βr)||2L2,N
/4Jζ2

0

)]
because E [e′ig (Xi, β

r) | X1, . . . , XN ] = 0, choice probabilities lie in [0, 1], and −
√
Jζ0 ≤ e′ig(Xi, β

r) ≤√
Jζ0 (by the Cauchy-Schwarz inequality) uniformly.
Now note under the event

{
||g(·, βr)||L2 ≤ 2||g(·, βr)||L2,N

, ∀r = 1, . . . , R
}
,

∑R

r=1
exp

(
−Nη2

N ‖g (·, βr)‖2L2,N
/2Jζ2

0

)
≤

∑R

r=1
exp

(
−Nη2

N ‖g (·, βr)‖2L2
/8Jζ2

0

)
(32)

≤
∑R

r=1
exp

(
−Nη2

Nc
2
0/8Jζ

2
0

)
= R exp

(
−CNη2

Nc
2
0/ζ

2
0

)
.

From (31)-(32) and Lemma 3, the claim follows.

The following Lemma 7 decomposes the error bound into a bias term and a variance term.

Lemma 7. Suppose X has positive measure and Assumption 4(i)-(iii) hold. Then, for any N ≥ 1,
R ≥ 2, and a > 1, we have for all F ∈ FR(N) ,

∥∥∥P (xi, F̂N )− P (xi, F0)
∥∥∥2

L2,N

≤ a+ 1

a− 1
‖P (xi, F )− P (xi, F0)‖2L2,N

+ C
η2
NRζ

2
0

ξmin(R)

a2

a− 1
,

where the inequality holds with probability greater than 1− pN,R,
pN,R ≡ R exp

(
−CNη2

Nc
2
0/ζ

2
0

)
+ 2R exp

(
−C1Nc

4
0/ζ

4
0

)
+R2 exp

(
−C2N/ζ

2
0R

2
)
.

Proof. Because P (xi, F̂N ) (i.e., F̂N ) is the solution of the minimization problem in (6), we have

||P (xi, F̂N )− yi||2L2,N
≤ ||P (xi, F )− yi||2L2,N

(33)

for any F ∈ FR(N). Now note that

∥∥∥P (xi, F̂N )− yi
∥∥∥2

L2,N

=
∥∥∥P (xi, F̂N )− P (xi, F0) + P (xi, F0)− yi

∥∥∥2

L2,N

=
∥∥∥P (xi, F̂N )− P (xi, F0)

∥∥∥2

L2,N

− 2
∑

i
e′i

(
P (xi, F̂N )− P (xi, F0)

)
/N + ||ei||2L2,N

, (34)
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where we use the definition ei = yi − P (xi, F0). Similarly we obtain

∥∥∥P (xi, F̂N )− yi
∥∥∥2

L2,N

= ‖P (xi, F )− P (xi, F0)‖2L2,N
−2
∑

i
e′i (P (xi, F )− P (xi, F0)) /N+||ei||2L2,N

.

(35)

Subtracting (35) from (34) and by (33), we obtain∥∥∥P (xi, F̂N )− P (xi, F0)
∥∥∥2

L2,N

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N
+ 2

∑
i

e′i(P (xi, F̂N )− P (xi, F ))/N.

Let VN,r = 1
N

∑N
i=1 e

′
ig(xi, β

r). Then, 1
N

∑
i e
′
i(P (xi, F̂N ) − P (xi, F )) =

∑R
r=1 VN,r(θ̂

r − θr) by con-
struction of P (xi, F̂N ) and P (xi, F ) and we obtain by the triangle inequality,∥∥∥P (xi, F̂N )− P (xi, F0)

∥∥∥2

L2,N

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N
+ 2

∑
r

|VN,r| · |θ̂r − θr|. (36)

Define the event E1 =
⋂R
r=1

{
|VN,r | ≤ ηN ||g(·, βr)||L2,N

}
. Then under {E0 ∩E1}, we have

∑R

r=1
V 2
N,r(θ̂

r − θr)2 ≤ η2
N

∑R

r=1
||g(·, βr)||2L2,N

(θ̂r − θr)2 (37)

= η2
N

1

N

∑N

i=1

∑R

r=1
(θ̂r − θr)2||g(xi, β

r)||2E = η2
N (θ̂ − θ)′diag(ΨN,R)(θ̂ − θ)

≤ η2
N

(
ξmin(R)/4ζ2

0

)−1
(θ̂ − θ)′ΨN,R(θ̂ − θ) = η2

N

(
ξmin(R)/4ζ2

0

)−1 ||P (xi, F̂N )− P (xi, F )||2L2,N
.

From (36) and (37), it follows that under the event {E0 ∩E1},∥∥∥P (xi, F̂N )− P (xi, F0)
∥∥∥2

L2,N

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N
+ 2

∑R

r=1
|VN,r| · |θ̂r − θr|

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N
+ 2
√
R

(∑R

r=1
V 2
N,r

(
θ̂r − θr

)2
)1/2

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N
+ 2ηN

√
R
(
ξmin(R)/4ζ2

0

)−1/2 ||P (xi, F̂N )− P (xi, F )||L2,N

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N

+2ηN
√
R
(
ξmin(R)/4ζ2

0

)−1/2
(∥∥∥P (xi, F̂N )− P (xi, F0)

∥∥∥
L2,N

+ ‖P (xi, F )− P (xi, F0)‖L2,N

)
by the Cauchy-Schwarz inequality, RCS, and the triangle inequality. Applying the inequality 2xy ≤
x2a+ y2/a (any x,y, a > 0) to x = ηN

√
R(ξmin(R)/4ζ2

0 )−1/2 and y = ||P (xi, F̂N )−P (xi, F0)||L2,N
and

to x = ηN
√
R(ξmin(R)/4ζ2

0 )−1/2 and y = ||P (xi, F )−P (xi, F0)||L2,N
, respectively, we obtain under the

event {E0 ∩E1},∥∥∥P (xi, F̂N )− P (xi, F0)
∥∥∥2

L2,N

≤ ‖P (xi, F )− P (xi, F0)‖2L2,N
+
∥∥∥P (xi, F̂N )− P (xi, F0)

∥∥∥2

L2,N

/a

+ ‖P (xi, F )− P (xi, F0)‖2L2,N
/a+ 2aη2

NR
(
ξmin(R)/4ζ2

0

)−1
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It follows that under the event {E0 ∩E1}, for all a > 1,∥∥∥P (xi, F̂N )− P (xi, F0)
∥∥∥2

L2,N

≤ a+ 1

a− 1
‖P (xi, F )− P (xi, F0)‖2L2,N

+ C
η2
NRζ

2
0

ξmin(R)

a2

a− 1
.

The conclusion follows from Lemma 6.

C.1 Proof of Theorem 5

We first obtain the convergence rates of the choice probability as

Lemma 8. Suppose the assumptions and the conditions in Theorem 5 hold. Then, we have∥∥∥P (xi, F̂N )− P (xi, F0)
∥∥∥2

L2,N

≤ OP

(
R(N) logR(N)

ξmin(R(N)) ·N

)
+ C · inf

F∈FR(N)

‖P (xi, F )− P (xi, F0)‖2L2,N
.

Then the result of Theorem 5 follows from Lemma 8 combined with Lemma 1. Lemma 8 derives
the variance term of the asymptotic bounds and Lemma 1 derives the bias term. We prove Lemma 8
below.

C.2 Proof of Lemma 8

From Lemma 7, the fastest convergence rate will be obtained when the order of ηN is as small as
possible while keeping pN,R → 0. By inspecting pN,R, we note that the optimal rate is obtained when
we choose ηN = C

√
logR(N)/N since the first term in pN,R dominates the second term in pN,R when

ηN is small enough and pN,R → 0 with this choice of ηN . The inspection of the third term in pN,R
reveals that we also require R(N) should satisfy R(N)2 logR(N)/N → 0 so that pN,R → 0. The result
of Lemma 8 follows from these requirements, Lemma 7 and∥∥∥P (xi, F̂N )− P (xi, F0)

∥∥∥2

L2,N

≤ OP

(
R(N) logR(N)

ξmin(R(N)) ·N

)
+ C · ‖P (xi, F )− P (xi, F0)‖2L2,N

because C η2NR(N)ζ20
ξmin(R(N))

a2

a−1 = O
(
R(N) logR(N)
ξmin(R(N))·N

)
under our choice of ηN and because Lemma 7 holds for

any F ∈ FR(N).

C.3 Proof of Lemma 1

First we construct approximating power series with the length of L tensor products of higher order
polynomials of βk’s in β as (ϕ1(β), . . . , ϕl(β), . . . , ϕL(β)), where ϕl(β) is the lth element in the L number
of tensor product polynomials. The tensor products are defined by the functions ϕl(β) = βl11 β

l2
2 · · ·β

lK
K

with β = (β1, β2, . . . , βK) ∈ B =
∏K
k=1[β

k
, βk] and lk’s are exponents of each βk. For example, we can

let ϕ1(β) = 1, ϕ2(β) = β1, . . . , and ϕl(β) = βl11 β
l2
2 · · ·β

lK
K .

Now note that each gj (x, β) f(β) is a member of the Hölder class (s-smooth) of functions since
it is uniformly bounded and all of its own and partial derivatives up to the order of s are also uni-
formly bounded by our restriction on f in H and Assumption 4 (iv). Therefore, we can approximate
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gj (x, β) f(β) well using power series (see Chen, 2007) and obtain the approximation error rate due to
Timan (1963) as (we suppress dependence of al and ϕl on j for notational simplicity)

sup
β∈B

∣∣∣∣gj (x, β) f(β)−
∑L

l=1
al(x)ϕl(β)

∣∣∣∣ = O
(
L−s/K

)
(38)

for all x ∈ X . Let
(
β
k

= bk,1 < bk,2 < · · · < bk,rk+1 = βk, k = 1, . . . ,K
)
be partitions of the intervals

[β
k
, βk], k = 1, . . . ,K, into r1, . . . , rK subintervals, respectively. Then we can define the R = r1r2 · · · rK

number of subcubes as {Cι1,...,ιK =
∏K
k=1[bk,ιk , bk,ιk+1], ιk = 1, 2, . . . , rk}, which become a partition

P (B) of B. For any choice of R points

(bι1,...,ιK ∈ Cι1,...,ιK | ιk = 1, 2, . . . , rk,k = 1, . . . ,K)

(one bι1,...,ιK for each of R subcubes), now we can approximate a Riemann integral of
∑L

l=1 al(x)ϕl(β)

using a quadrature method with R distinct weights

(c(ι1, . . . , ιK) ≡ c(bι1,...,ιK ) | ιk = 1, . . . , rk, k = 1, . . . ,K) such that

∫ ∑L

l=1
al(x)ϕl(β)dβ =

∑L

l=1
al(x)

∫
ϕl(β)dβ

=
∑L

l=1
al(x)

∑
Cι1,...,ιK∈P (B)

c(ι1, . . . , ιK)ϕk(bι1,...,ιK ) +R(δR)

where R(δR) denotes a remainder term with δR = max {diam(Cι1,...,ιK ) : Cι1,...,ιK ∈ P (B)}. Without
loss of generality, we will pick δR = C · R−1/K . Noting that ϕl(β) is a product of polynomials in
βk’s by construction, we can apply Theorem 6.1.2 (Generalized Cartesian Product Rules) of Krommer
and Ueberhuber (1998) and so we can approximate multivariate integrals with products of univariate
integrals. Note that

∫
ϕl(β)dβ =

∏K
k=1

∫
ϕl,k(βk)dβk with ϕl(β) =

∏K
k=1 ϕl,k(βk). Therefore if we

approximate
∫
ϕl,k(βk)dβk using a univariate quadrature with weights {ck(1), . . . , ck(rk)}, generally we

obtain
∫
ϕl,k(βk)dβk =

∑rk
ιk=1 ck(ιk)ϕl,k(bk,ιk) +Rl,k(δR) where Rl,k(δR) denotes a possible remainder

term. Now we can make the univariate quadrature even become accurate (or exact) at least up to the
order of rk (Theorem 5.2.1 in Krommer and Ueberhuber (1998)) i.e.,

∫
βpkdβk =

∑rk
ιk=1 ck(ιk)b

p
k,ιk

with
suitable choice of ck(ιk) ≡ ck(bk,ιk) for all p ≤ rk such that Rl,k(δR) = 0.

For notational simplicity, we take rk = r1 for all k. Then with the L = (r1 + 1)K = (R1/K + 1)K

number of power series, we can include powers and cross products of βk’s at least up to the order of
r1. With the choice of L = (r1 + 1)K and ck(ιk)’s that make the univariate quadrature exact at least
up to the order of r1, we can let∫

ϕl(β)dβ =
∏K

k=1

∫
ϕl,k(βk)dβk =

∏K

k=1

∑rk

ιk=1
ck(ιk)ϕl,k(bk,ιk) (39)

36



for l = 1, . . . , L. By adding and subtracting terms, it follows that for some F ∗ defined later

Pj (x, F )− Pj (x, F ∗) =

∫
f(β)gj (x, β) dβ −

∫ ∑L

l=1
al(x)ϕl(β)dβ (40)

+
∑L

l=1
al(x)

∫
ϕl(β)dβ −

∑L

l=1
al(x)

∏K

k=1

∑rk

ιk=1
ck(ιk)ϕl,k(bk,ιk) (41)

+
∑L

l=1
al(x)

∏K

k=1

∑rk

ιk=1
ck(ιk)ϕl,k(bk,ιk)− Pj (x, F ∗) . (42)

We first bound (40) by the triangle inequality and (38), (40) ≤
∫ ∣∣∣f(β)gj (x, β)−

∑L
l=1 al(x)ϕl(β)

∣∣∣ dβ =

O(L−s/K · vol(B)). Second note that (41) becomes zero due to (39).
Next construct ϕ̃l(br), r = 1, . . . , R such that

∑R
r=1 ϕ̃l(b

r) =
∏K
k=1

{∑rk
ιk=1 ck(ιk)ϕl,k(bk,ιk)

}
with

R = r1 · · · rK and br = (br1, b
r
2,, . . . , b

r
K) in b ≡ {b : b = (b1,ι1 , . . . , bK,ιK ), ι1 = 1, . . . , r1, . . . , ιK = 1, . . . , rK}.

Then, for any choice of br ∈ b we can always write ϕ̃l(br) = c1(b1,ι1) · · · cK(bK,ιK )ϕl(b) for some
b = (b1,ι1 , . . . , bK,ιK ) in b. Therefore without loss of generality write

R∑
r=1

ϕ̃l(b
r) =

∏K

k=1


rk∑
ιk=1

ck(ιk)ϕl,k(bk,ιk)

 =

R∑
r=1

c1(br) · · · cK(brK)ϕl(b
r). (43)

Define θ∗r = c1(br1) · · · cK(brK)f(br)/
{∑R

r=1 c1(br1) · · · cK(brK)f(br)
}

and let F ∗ be constructed using
the weights θ∗. It follows that∣∣∣∣∑L

l=1
al(x)

∏K

k=1

∑rk

ιk=1
ck(ιk)ϕl,k(bk,ιk)− Pj (x, F ∗)

∣∣∣∣
≤

R∑
r=1

∣∣∣∣∑L

l=1
al(x)ϕ̃l(b

r)− θ∗rgj (x, br)

∣∣∣∣
=

R∑
r=1

∣∣∣ ∑L
l=1 al(x)c1(br1) · · · cK(brK)ϕl(b

r)− c1(br1)···cK(brK)f(br)∑R
r=1 c1(br1)···cK(brK)f(br)

gj (x, br)
∣∣∣

≤
R∑
r=1

|c1(br1) · · · cK(brK)|

∣∣∣∣∣
L∑
l=1

al(x)ϕl(b
r)− f(br)∑R

r=1 c1(br1) · · · cK(brK)f(br)
gj (x, br)

∣∣∣∣∣
≤

R∑
r=1

|c1(br1) · · · cK(brK)| |
∑L

l=1
al(x)ϕl(b

r)− f(br)gj (x, br) |

+

R∑
r=1

|c1(br1) · · · cK(brK)|

∣∣∣∣∣
∑R

r=1 c1(br1) · · · cK(brK)f(br)− 1∑R
r=1 c1(br1) · · · cK(brK)f(br)

∣∣∣∣∣ |f(br)gj (x, br)|

= O
(
R ·R−1L−s/K

)
where the first inequality holds by the triangle inequality and (43) and the first equality holds by
(43) and by the definition of θ∗r. In the above note that |c1(br1) · · · cK(brK)| is at most O(R−1), which
is obtained if one uses the uniform weights, i.e., ck(b1k) = . . . = ck(b

R
k ) for k = 1, . . . ,K. Second

note that
∣∣∣∑L

l=1 al(x)ϕl(b
r)− f(br)gj (x, br)

∣∣∣ = O(L−s/K) due to the bound in (38). Third note that
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∑R
r=1 c1(br1) · · · cK(brK)f(br) is another quadrature approximation of the integral

∫
B f(β)dβ = 1. Be-

cause f(β) itself belongs to a Hölder class, the approximation error rate of this integral becomes∣∣∣∑R
r=1 c1(br1) · · · cK(brK)f(br)− 1

∣∣∣ = O
(
L−s/K

)
. To see this, note that

∣∣∣∣∣
∫
B
f(β)dβ −

R∑
r=1

c1(br1) · · · cK(brK)f(br)

∣∣∣∣∣
≤

∣∣∣∣∫
B
f(β)dβ −

∫
B

∑L

l=1
ãlϕl(β)dβ

∣∣∣∣ (44)

+

∣∣∣∣∑L

l=1
ãl

∫
B
ϕl(β)dβ −

∑L

l=1
ãl
∏K

k=1

∑rk

ιk=1
ck(ιk)ϕl,k(bk,ιk)

∣∣∣∣ (45)

+

∣∣∣∣∣∑L

l=1
ãl
∏K

k=1

∑rk

ιk=1
ck(ιk)ϕl,k(bk,ιk)−

∑L

l=1
ãl

R∑
r=1

c1(br) · · · cK(brK)ϕl(b
r)

∣∣∣∣∣ (46)

+

∣∣∣∣∣
R∑
r=1

c1(br) · · · cK(brK)
∑L

l=1
ãlϕl(b

r)−
R∑
r=1

c1(br1) · · · cK(brK)f(br)

∣∣∣∣∣ , (47)

where ãl satisfies supβ∈B

∣∣∣f(β)−
∑L

l=1 ãlϕl(β)
∣∣∣ = O

(
L−s/K

)
(such ãl’s exist since f(β) belongs to a

Hölder class). Then we find (44)= O
(
L−s/K · vol(B)

)
by the triangle inequality, (45)= 0 by (39), and

(46)= 0 by 43. Finally note (47)≤
∑R

r=1 c1(br) · · · cK(brK)
∣∣∣∑L

l=1 ãlϕl(b
r)− f(br)

∣∣∣ = O
(
R ·R−1 · L−s/K

)
by the triangle equality, |c1(br) · · · cK(brK)| is at most O(R−1), and because ãl satisfies
supβ∈B

∣∣∣f(β)−
∑L

l=1 ãlϕl(β)
∣∣∣ = O

(
L−s/K

)
.

Combining these results, we bound (42) as O(L−s/K). Combining these bounds, we then conclude

|Pj (x, F )− Pj (x, F ∗)| = O
(
L−s/K · vol(B)

)
+ 0 +O

(
L−s/K

)
= O

(
L−s/K

)
= O

(((
R1/K + 1

)K)−s/K)
= O

((
R1/K + 1

)−s)
≤ O

(
R−s/K

)
.

The second conclusion in the lemma is trivial since the above holds for all x ∈ X and j = 1, . . . , J .

C.4 Proof of Theorem 6

First we derive the distance between θ̂ and θ∗0 where θ∗0 (i.e. F ∗0 ) satisfies ‖P (xi, F
∗
0 )− P (xi, F0)‖2L2,N

=

OP
(
R−2s/K

)
. Note that such F ∗0 exists by Lemma 1. Note that with probability approaching to one,

we have 2 ‖g (·, βr)‖L2,N
≥ ‖g (·, βr)‖L2

≥ c0 > 0 for all r = 1, . . . , R by Lemma 3. It follows that
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c0

2

∑R

r=1
|θ̂r − θ∗r0 | (48)

≤
∑R

r=1
||g(·, βr)||L2,N

|θ̂r − θ∗r0 | ≤
√
R

(∑R

r=1
||g(·, βr)||2L2,N

(θ̂r − θ∗r0 )2

)1/2

≤
(
4ζ2

0/ξmin(R)
)1/2√

R||P (xi, F̂N )− P (xi, F
∗
0 )||L2,N

≤
(
4ζ2

0/ξmin(R)
)1/2√

R
(
||P (xi, F̂N )− P (xi, F0)||L2,N

+ ||P (xi, F
∗
0 )− P (xi, F0)||L2,N

)
=

√
R(N)/ξmin(R(N)) max

{
OP
(√
%R,N

)
, OP(R(N)−s/K)

}
,

where the second inequality holds by RCS, the third inequality holds similarly with (37), and the fourth
inequality holds by the triangle inequality. Therefore, by Lemma 1, the result of Theorem 5, and the
Cauchy-Schwarz inequality, the conclusion follows.

Next we have
∣∣∣F̂N (β)− F0(β)

∣∣∣ ≤ ∣∣∣F̂N (β)− F ∗0 (β)
∣∣∣+ |F ∗0 (β)− F0(β)| by the triangle inequality. It

is not difficult to see that

sup
β∈B

∣∣∣F̂N (β)− F ∗0 (β)
∣∣∣ = sup

β∈B

∣∣∣∣∑R

r=1
θ̂r1 [βr ≤ β]−

∑R

r=1
θ∗r0 1 [βr ≤ β]

∣∣∣∣
= sup

β∈B

∣∣∣∣∑R

r=1
(θ̂r − θ∗r0 )1 [βr ≤ β]

∣∣∣∣ ≤∑R

r=1
|θ̂r − θ∗r0 |,

where the last inequality holds by the triangle inequality. Note that F0(β) =
∫
f0(b)1 [b ≤ β] db and

F ∗0 (β) becomes a quadrature approximation. We use a similar strategy with the proof of Lemma 1
where we approximate f0(b) with

∑L
l=1 af0,lϕl(b) such that supβ∈B

∣∣∣f0(b)−
∑L

l=1 af0,lϕl(b)
∣∣∣ = O

(
L−s/K

)
due to Timan (1963). We find F0(β)− F ∗0 (β) = O

(
R−s/K

)
a.e. β ∈ B. Therefore, the conclusion fol-

lows from this and Theorem 5.
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