
Online Appendix for “A Simple Nonparametric Approach to
Estimating the Distribution of Random Coefficients in Structural

Models”

Jeremy T. Fox

Rice University & NBER

Kyoo il Kim

⇤

Michigan State University

Chenyu Yang

University of Rochester

May 2016

In our Monte Carlo study, we apply our fixed grid estimators to a capital replacement model in the
spirit of Rust (1987). A dynamic program must be solved for each grid point or simulation draw, so
working with a dynamic program showcases our method’s advantage of requiring computation of choice
probabilities only before optimization commences. We vary the number of grid points, the sample sizes
and the true distributions of the random coefficients. We compare the least squares and likelihood
criteria on a fixed grid (fixed grid estimators) with an alternative likelihood criterion on a flexible grid
(flexible grid estimator). For the fixed grid, we optimize over only weights. For the flexible grid, we
optimize over both the grid points and the weights, using a much smaller number of weights because of
the computational challenges of both optimization and the need to solve the dynamic program many
times. The two likelihood estimators are maximized using the EM algorithm. Our results suggest
that the two fixed grid estimators are much faster than the flexible grid estimator at the cost of some
statistical accuracy.

1 Heterogeneous Parameter Capital Replacement Model

We consider a capital replacement problem. A firm i uses one machine to produce output every period
t. Typically, the efficiency of the machine declines with time and the firm eventually finds it profitable
to replace the machine. Each period, the firm can choose to do nothing or to replace the existing
machine with one of J � 1 different types of machines. Replacing the existing machine resets firm i’s
machine’s age ai,t to 0. Denote the replacement decision as j 2 {1, 2, . . . , J}, where j = 1 means no
replacement and j � 2 means replacing the current machine with the new machine j and resetting the
age ai,t to 0.

The observables (in addition to actions) to the researcher are the age ai,t, a scalar shifter of the flow
profits from running a machine di,t, the scalar current machine’s loss rate from age wi,t in the flow profit
from running a machine, the vector of all J � 1 machines’ scalar loss rates from age vi = (v2,i, . . . , vJ,i)

and the matrix of shifters of the replacement costs of the J�1 machines ci = (c2,i, . . . , cJ,i), where each
cj,i is itself a vector of length Kc. The vector of efficiency loss rates vi and the matrix of replacement

⇤
Corresponding authors: Jeremy Fox at jeremyfox@gmail.com and Kyoo il Kim at kyookim@msu.edu.

1

cost shifters ci are specific to each firm i and are not time-varying. The value of the scalar wi,t is one
of the elements of the vector vi, corresponding to the loss rate for the firm’s current machine. Collect
the observables (other than actions) as xi,t = (ai,t, di,t, wi,t, vi, ci). The time-varying, observable state
variables are si,t = (ai,t, di,t, wi,t).

The flow profits are also affected by a vector of firm-specific and time-invariant heterogeneous
parameter �i and a vector of firm- and time-specific unobservables "i,t = ("1,i,t, . . . , "J,i,t). We discuss
the components of the vector �i below. We seek to estimate the distribution G (�) of �i, or how the
heterogeneous parameters vary across firms. Following the setup without time invariant heterogeneous
parameters in Rust (1987), the time varying unobservables in "i,t are independent across firms, machines
and time and identically distributed according to the extreme value type I distribution, which gives
logit probabilities for the replacement decisions. As in Rust, the so-called integrated value function
does not need to include "i,t as a state variable because "i,t is independent over time.

The flow profit for action j is ūi (j, si,t) + ✏j,i,t, where

ūi (j, si,t) =

(
�i,1 + �i,2w

�ai,t
i,t + �i,3di,t, j = 1

��

0
i,4cj,i j � 2.

Here the heterogeneous parameters �i,1, �i,2 and �i,3 are scalars, the heterogeneous parameter �i,4 is
a vector, and �i = (�i,1,�i,2,�i,3,�i,4) is a vector of length K = 3 +Kc. In addition to incorporating
shifters, the main content of the flow profit equation is that profit declines in machine age ai,t.

Recall that the time-varying state variables for firm i are si,t = (ai,t, di,t, wi,t). The scalar age ai,t

of the machine evolves as

ai,t+1 (j, ai,t) =

(
min {ai,t + 1, 5} , j = 1

0, j � 2,

which means that the age resets to 0 after replacement and also stops increasing after an age of 5.
The current efficiency loss rate wi,t corresponds to the efficiency loss of firm i’s current machine and
so transitions as

wi,t =

(
wi,t, j = 1

vj,i, j � 2.

The shifter di,t has a finite support and evolves according to the Markov process Pr (di,t+1 | di,t), which
is independent of the firm’s replacement decision and other variables.

For this model, the time invariant terms that distinguish firm i from other firms are the vector of
heterogeneous parameters �i, the matrix ci, and the vector vi. Therefore, the dynamic program needs
to be solved for each firm i. Following Rust (1987), the integrated value function and the conditional
choice probabilities, which both integrate out "i,t, are

Vi (si,t) = 0.577 . . .+ ln

0

@
JX

j=1

exp (ūi (j, si,t) + �EVi (si,t+1 | si,t, j))

1

A
and

ḡj,i (si,t) =

exp (ūi (j, si,t) + �EVi (si,t+1 | si,t, j))PJ
j0=1 exp (ūi (j

0
, si,t) + �EVi (si,t+1 | si,t, j0))

,

2

where � is the discount factor and EVi (si,t+1 | si,t, j) is the choice specific continuation payoffs function.
The expectations are non-trivially taken with respect to only di,t because the transitions of (ai,t, wi,t)

are deterministic given actions. Each value function Vi is stored on the computer as a vector of length
equal to the number of distinct values of si,t.

To write the dynamic programming choice probabilities in the notation of the general mixture
model (1), let gj (xi,t,�i) = ḡj,i (si,t) be the probability of replacement action j given the observables
xi,t and the time invariant, heterogeneous parameters �i. We solve the value function, a system of
nonlinear equations, using value function iteration. Using the fixed grid estimation approach, there is
one value function to solve for each combination of a grid value for �i and a value for the observable,
time invariant firm characteristics (ci, vi).

2 Estimators

Our consistency and rate results in this paper are for cross-sectional data, not panel data. Therefore,
we generate cross sectional data to test the estimators. Denote the replacement decision of firm i

as yi 2 {1, . . . , J}. The data consists of (yi, xi) for i = 1, . . . N . Each firm is observed only once
and the states and actions are statistically independent across firms, conditional on observables. For
the dimension of the vector of heterogeneous parameters on the cost of replacement shifters, �4, we
consider both Kc = 1 and 5. Given that K = 3+Kc, we estimate models with either K = 4 or K = 8

total heterogeneous parameters. In other words, the unknown distribution F (�) is either a four- or
eight-dimensional function.

We estimate using the same simulated data set using the least squares and likelihood fixed grid
estimators and the likelihood flexible grid estimator. We use identical fixed grids for the least squares
and likelihood criteria. The flexible grid likelihood method estimates both the vector of grid points
BR and the vector of weights

�
✓

1
, . . . , ✓

R
�

on each grid point. We use the MATLAB constrained linear
least squares routine, lsqlin, for the least squares criterion. We follow the implementations of the
EM algorithm for static logit models in Train (2008, Sections 4 and 6) for the fixed and flexible grid
likelihood estimators. The details are in Section 6 of this appendix. Our convergence rule for the fixed
grid EM algorithm is that either the maximum absolute change in the weight is less than 10

�9 or the
number of iterations is greater than 2000. In our Monte Carlo specifications, convergence is usually
achieved within 100 iterations.

The fixed grid estimators are guaranteed to converge to the global optimum of the objective function
from any starting value, as our optimization problems are convex. The flexible grid estimator is
guaranteed to converge to only a local maximum of the likelihood function.

We apply the fixed grid estimators to sample sizes of N = 100, 500, and 1000 observations on
independent firms. For each Monte Carlo choice of K, N , R and the number of mixture components
M in the true data generating process (described below), we perform L = 100 replications of estimation
using different fake data sets. For each replication, we use the same dataset for all three estimators. Due
to the extremely long computational time of the flexible grid estimator for our dynamic programming
model, we only run the flexible grid estimator for the sample size N = 50 and the number of grid points
R = 10. For similar computational reasons, the flexible grid estimator runs for only 10 iterations of
the EM algorithm from one starting value, so its measured statistical error is an upper bound to the

3

performance of the flexible grid estimator run to convergence from many starting values.
Our dynamic programming model highlights the computational savings of fixed grid estimators. For

a grid vector �r, the value function also depends on the firm specific, time-persistent observables (ci, vi).
We solve in total N ·R different dynamic programming problems when using a fixed grid estimator with
R grid points. For each Monte Carlo replication, the dynamic programming computation is done once
and applied to both the least squares and likelihood criteria. In contrast, the flexible grid estimator is
much more computationally intensive because it needs to solve many dynamic programming problems
every time the optimizer calls choice probabilities. Choice probabilities are usually called thousands of
times during optimization in a single EM iteration, resulting in far more dynamic programs than the
N ·R from the fixed grid approaches.

3 Monte Carlo Data Generating Process

We now specify the data generating process for the Monte Carlo study. We set J = 6 so that there
are five machines. The discount factor � is 0.95. Given the focus on testing the estimators on cross
sectional data, we draw the heterogeneous parameters �i independently of xi. Therefore, we do not
explore statistical endogeneity, the so-called initial conditions problem in panel data.

The elements of xi have finite, continuous uniform or normal distributions.1 The elements of
(ci, vi) have independent standard uniform distributions across machines. The profit shifter di,t has 50
possible discrete values, drawn from a normal distribution and fixed across Monte Carlo specifications
and replications. We then generate the transition matrix with elements Pr (di,t+1 | di,t) by drawing
the elements from independent uniform distribution and normalizing

P
supp(di,t+1)

Pr (di,t+1 | di,t) to
be 1. The terms Pr (di,t+1 | di,t) are also fixed across Monte Carlo specifications and replications. The
current di,t for firm i is uniformly drawn from its support. The current age ai,t is uniformly drawn
from the integers 0 to 5. Firm i’s wi,t is sampled uniformly from firm i’s vi.

The true distributions F0 (�) are mixtures of multivariate normals, each with nonzero correlations.
We vary the number M of mixture components in the true distribution. There are either M = 1, 2 or
5 mixture components. Each of the normal mixture components has an equal weight of 1/M .

Define five sets of means for the maximum K of eight heterogeneous coefficients

µ1 = [0.375,�2, 2, 2, 0.875, 0.75, 1.25, 1.875]

µ2 = [0.25, 1,�1, 1.625, 2, 0.125, 1.25, 2]

µ3 = [0.375, 2,�2, 0.375, 1.75, 0.625, 0.25, 0.125]

µ4 = [0.5,�2,�2, 1.75, 0.75, 1.625, 0.875, 1.875]

µ5 = [0.25, 0,�1, 0.625, 0.375, 0.125, 0.125, 1.25] .

We use these terms for the data generating process for all specifications. Denote the first K elements
of the vector µm as µm (K). Say a particular Monte Carlo specification uses K = 4 and M = 2. Then
the true distribution of � is a mixture of two normals, each with weight 1/2, and the mth component
has mean µm (4).

1
An identification result for the distribution of heterogeneous parameters in the random coefficients logit relies on

explanatory variables being continuous, as we discuss for Example 1 in Section 6 of the main text. Some of the elements

of xi have continuous distributions and others have discrete distributions, to simplify dynamic programming.

4

Defining the covariance matrix of each mixture component is more involved. A base matrix is a
symmetric matrix that is 4.3562 on the diagonal and 0.5252 elsewhere:

⌃

?
=

2

6666664

4.3562 0.5252 . . .

0.5252 4.3562 . . .

...
... . . .

| {z }
8 elements

3

7777775
.

Also denote the Kth leading principal submatrix of ⌃? as ⌃ (K). In the data generating process, a

mixture of 1  M  5 normals of dimension K is defined as F (�) =

PM
m=1

1

M

N (µM (K) ,⌃K), where
the variance matrix of each component is

⌃K = ⌃ (K) +

1

5

5X

m=1

(µm (K)� µ̄5 (K))

0
(µm (K)� µ̄5 (K))

� 1

M

MX

m=1

(µm (K)� µ̄M (K))

0
(µm (K)� µ̄M (K)) ,

where µ̄M (K) =

1
M

P
µm (K). In our specifications, this somewhat recursive choice of ⌃K makes the

true distributions F (�) have the same variance matrix across choices of M , so there is not a tight link
between the number of modes M and the baseline grid’s coverage of the true distribution across Monte
Carlo specifications.2

We use a quasi-random number sequence to generate a baseline grid for the two fixed grid estimators.
We draw R = 100 or 200 values from a Halton sequence. The draws are low-discrepancy points in
the box [0, 1]

K , and we map them into a larger region by multiplying each element by 15. We shift
the coefficient �i,1 on the loss rate due to age by -1.5, the intercept �i,2 by -7.5, the coefficient �i,3 by
-7.5, and the elements of the vector �i,4 by 1.5.3 We generate the grid for evaluation of measures like
RMISE, defined below, in the same way, except we draw 5000 points.

4 Results on Speed

The results of various Monte Carlo specifications are in Table 1 for the fixed grid least squares esti-
mator, Table 2 for the fixed grid likelihood estimator, and Table 3 for a comparison between all three
estimators, including the flexible grid likelihood estimator. All times are for code parallelized over 12
cores.

Focus first on the speed of the fixed grid estimators in Table 1 and 2. The tables break out the time
spent on computing dynamic programs before optimization and the time spent on optimization / the

2
Note that the variance matrix of

PM
m=1

1
M

N (µM (K) ,⌃K) is ⌃K+
1
M

PM
m=1 (µm (K)� µ̄M (K))0 (µm (K)� µ̄M (K)).

With our choice of ⌃K , the variance matrix becomes ⌃ (K) +
1
5

P5
m=1 (µm (K)� µ̄5 (K))0 (µm (K)� µ̄5 (K)) for any

M .

3
Some �i,2 are negative, meaning that the machine’s output actually improves with age.

5

EM algorithm. Table 1 shows that the overwhelming majority of time for the least squares estimator
is spent on solving the N ·R dynamic programs before optimization begins. In our largest sample size
N = 1000 and largest estimation grid R = 200, the dynamic programming takes on average (across
replications) 1.7 hours. The optimization command for fixed grid least squares, lsqlin in MATLAB,
consumes an insignificant amount of time, under 7 seconds in all the specifications considered. Table 2,
for the fixed grid likelihood criterion, does not report dynamic programming time because the dynamic
programs reported in Table 1 are reused. The EM algorithm is even faster than the MATLAB command
lsqlin; optimization takes under 3 seconds for all specifications in Table 2. The bottom line is that
dynamic programming is far more costly than optimizing the statistical objective functions.

Table 3 compares all three estimators, including the flexible grid estimator, on a problem with
N = 50, R = 10 and K = 4. The two fixed grid estimators require solving N · R = 500 dynamic
programs before optimization begins. For only 10 EM algorithm iterations from a single starting
value, the flexible grid estimator requires solving on average (across the 100 Monte Carlo replications)
over 200,000 dynamic programs for all specifications, as dynamic programs are nested inside each
call to calculate choice probabilities. The average time of the 10 EM algorithm iterations for the
flexible grid estimator is around 10,000 seconds, or around 2.7 hours. This compares to 12 seconds to
convergence (not just 10 iterations) for the fixed grid estimators, including the dynamic programming
time. Altogether, the comparison in Table 3 shows the tremendous speed benefits of fixed grid over
flexible grid methods.

For the flexible grid estimator, Table 3 reports only the outcome of 10 iterations from a single
starting value in order to reduce the run time of the Monte Carlo. In empirical work, more starting
values should be used and the EM algorithm should be run until some notion of convergence is achieved.

5 Results on Statistical Accuracy

We measure estimation accuracy using root mean integrated squared error (RMISE) and integrated
absolute error (IAE). Denote the estimated distribution of � from one Monte Carlo replication l as ˆ

Fl

and the true distribution as F0. The estimated CDF is evaluated on a grid consisting of Q = 5,000

points, so that the true CDF values of these points are smoothly spread from 0 to 1. The RMISE for
a Monte Carlo specification with L replications is

vuut 1

L

LX

l=1

1

Q

QX

q=1

⇣
ˆ

Fl (�q)� F0 (�q)

⌘2
.

The IAE for a given replication l is defined as

1

Q

QX

q=1

���� ˆFl (�q)� F0 (�q)

����.

We report the mean, minimum and maximum IAE across replications for each estimator and Monte
Carlo specification.

Table 1 and Table 2 report the RMISE and IAE of the least squares and likelihood fixed grid

6

estimators, respectively. The two estimators take as input the same grid and corresponding choice
probabilities for each grid point and firm; they differ only in the statistical criterion. The tables show
that both the RMISE and IAE of the least squares estimator tend to be lower than the RMISE and
IAE of the fixed grid likelihood estimator. At least in our setup, the least squares criterion seems
preferable because of its better statistical performance and the fact that its slower optimization speed
is still trivial compared to the time spent on dynamic programming.

Tables 1 and 2 compare true data generating processes with M = 1, 2 and 5 multivariate normal
components. Both RMISE and IAE increase with the number of modes in the true distribution
generating the data, although the amounts of the increase in RMISE and IAE are not large. It
appears to be harder to nonparametrically estimate distributions with more modes.

Tables 1 and 2 also vary K, the dimension of the heterogeneous parameters �. K is either 4 or
8. Not surprisingly, RMISE and mean IAE tend to increase with K. The increase is largest for the
case of M = 1, where the true distribution is a single component multivariate normal. For higher M ,
changing K from 4 to 8 increases in RMISE and IAE by only a small amount. Compared to M = 1,
the difference is poorer performance with K = 4, as the statistical performance of the K = 8 case is
less sensitive to M . While there is some evidence of estimation error substantially increasing with K

for M = 1, for other M the Monte Carlo study does not demonstrate the curse of dimensionality in K

found in the upper bound of the convergence rate of the CDF supremum estimation error in Theorem
6.

Tables 1 and 2 also shed light on how grid size R affects statistical accuracy. With K = 4, increasing
the grid size from 100 to 200 reduces RMISE and IAE. The reduction is less perceptible with higher
dimensional heterogeneous parameters, K = 8.

Tables 1 and 2 also report the mean (across replications) number of the R grid points whose weights
✓

r are estimated to be nonzero (greater than 0.001). For both fixed grid estimators, it is common to
have around 10 nonzero weights, out of a grid of either R = 100 or R = 200 points. Both estimators
favor sparse representations of the true distribution without including any sort of LASSO-style penalty.
The number of nonzero weights varies across replications but there is no strong trend favoring more
nonzero weights for either the least squares or fixed grid likelihood estimators. Both Tables 1 and 2
compare specifications by varying K and M . Not surprisingly, higher M and K tend to lead to more
nonzero weights, but the effect is small relative to the grid sizes of R = 100 and R = 200.

Tables 1 and 2 report how sample size N affects accuracy. Across sample sizes of N = 100, 500
and 1000, we see only tiny reductions in RMISE and mean IAE with N . This is consistent with an
estimator that converges slowly, as Theorem 6 indicates.

Table 3 compares all three estimators on a small sample N = 50 with a small grid R = 10. Due
to the flexible estimator’s prohibitively long computational time, we iterate the EM algorithm for the
flexible grid estimator ten times from one starting point. We use K = 4 and vary M to be 1, 2 or
5, as in Tables 1 and 2. Although the flexible grid estimator has not converged and we only use one
starting value, its RMISE and IAE are substantially lower than the fixed grid results. Table 3 shows
that there is a large statistical advantage of being able to estimate a flexible grid instead of fixing a grid
of heterogeneous parameters. Bringing in the run times in Table 3, there is a clear tradeoff between
the prohibitive speed of the flexible grid estimator and the poorer statistical performances of the fixed
grid estimators.

7

6 EM Algorithms

We use uniform random variables to generate starting points for probability weights, means and vari-
ances in the EM estimators. The flexible-grid EM estimator has the following steps (suppressing the t

subscript).

1. Start with initial values �0 and ✓0. Calculate

K (xi,�
r
0) =

JY

j=1

[gj (xi,�
r
0)]

1(yi=j)
,

where yi denotes firm i’s decision on replacement.

Then calculate h

0
i,r =

✓

r
0K (xi,�

r
0)PR

r=1 ✓
r
0K (xi,�

r
0)

.

2. Update ✓0 to ✓1: ✓

r
1 =

P
i h

0
i,rP

i

PR
r=1 h

0
i,r

.

3. Use ✓1 to estimate �1 by maximizing the log likelihood

L

✓
✓1,�

����x
◆

=

X

i

RX

r=1

ln (✓

r
1K (xi,�

r
)) .

Notice that �

r only appears in the term
P

i ln (✓
r
1K (xi,�

r
)). We only need to solve for �

r
1 by

maximizing
P

i ln (✓
r
1K (xi,�

r
)) separately for each r. Repeat steps 2 and 3 until convergence,

letting �0 = �1 and ✓0 = ✓1. We use MATLAB’s optimizer fminunc for this step.

The fixed-grid EM estimator has the following steps.

1. Start with a fixed grid BR and initial weights ✓0. Calculate K (xi,�
r
) and h

0
i,r.

2. Update ✓0 to ✓1: ✓

r
1 =

P
i h

0
i,rP

i

PR
r=1 h

0
i,r

. Repeat step 2 until convergence, letting ✓0 = ✓1.

References

[1] Train, K. (2008), “EM Algorithms for Nonparametric Estimation of Mixing Distributions”,
Journal of Choice Modeling, 1, 1, 40–69.

8

N R M K RMISE max IAE mean IAE min IAE
Time
Using

lsqlin (s)

Dynamic
Prog

Time (s)

Mean # of
Positive
Weights

100 100 1 4 0.23 0.38 0.18 0.1 0.46 382.03 7.59
100 100 1 8 0.3 0.37 0.28 0.23 0.46 402.89 6.07
100 200 1 4 0.21 0.35 0.16 0.07 1.55 610.64 7.91
100 200 1 8 0.3 0.34 0.27 0.21 1.57 654.59 6.52
500 100 1 4 0.21 0.27 0.18 0.13 0.79 1527.67 8.7
500 100 1 8 0.3 0.3 0.27 0.24 0.82 1603.61 7.13
500 200 1 4 0.19 0.25 0.15 0.09 4 3123.93 9.77
500 200 1 8 0.3 0.3 0.28 0.24 3.81 3276.52 7.93

1000 100 1 4 0.21 0.24 0.18 0.13 1.46 2425.95 8.94
1000 100 1 8 0.29 0.31 0.27 0.24 1.32 3149.32 7.35
1000 200 1 4 0.18 0.21 0.15 0.1 6.87 6078.88 10.72
1000 200 1 8 0.3 0.31 0.28 0.25 6.98 6379.8 8.47
100 100 2 4 0.29 0.46 0.24 0.15 0.37 314.88 7.84
100 100 2 8 0.28 0.35 0.26 0.2 0.36 326.87 6.85
100 200 2 4 0.28 0.41 0.23 0.1 1.53 613.65 8.45
100 200 2 8 0.29 0.31 0.26 0.2 1.54 647.46 7.44
500 100 2 4 0.28 0.33 0.24 0.16 0.84 1517.89 8.75
500 100 2 8 0.29 0.29 0.26 0.23 0.82 1606.72 9.04
500 200 2 4 0.26 0.31 0.23 0.14 3.86 3041.95 9.89
500 200 2 8 0.29 0.29 0.26 0.23 3.6 3199.49 9.92

1000 100 2 4 0.28 0.3 0.25 0.21 1.39 3014.08 9.14
1000 100 2 8 0.29 0.29 0.26 0.24 1.51 3243.94 9.61
1000 200 2 4 0.26 0.33 0.23 0.16 6.87 6016.28 10.56
1000 200 2 8 0.29 0.28 0.26 0.24 6.8 6241.11 11.36
100 100 5 4 0.31 0.39 0.28 0.17 0.5 398.14 7.71
100 100 5 8 0.31 0.35 0.28 0.19 0.49 416.35 7.02
100 200 5 4 0.3 0.4 0.26 0.14 1.58 617.19 8.15
100 200 5 8 0.31 0.34 0.28 0.23 1.56 658.42 7.19
500 100 5 4 0.32 0.36 0.29 0.23 0.74 1514.24 8.66
500 100 5 8 0.3 0.31 0.28 0.25 0.84 1625.02 9.53
500 200 5 4 0.29 0.35 0.26 0.18 3.78 3050.03 9.92
500 200 5 8 0.31 0.31 0.28 0.23 5.82 4010.44 10.77

1000 100 5 4 0.32 0.33 0.3 0.23 1.49 3015.38 8.33
1000 100 5 8 0.3 0.3 0.28 0.25 1.45 3174.38 11.17
1000 200 5 4 0.3 0.36 0.28 0.19 6.96 6049.14 10.49
1000 200 5 8 0.3 0.3 0.28 0.25 6.56 5122.4 12.9

Table 1: Fixed Grid Least Squares

N R M K RMISE max IAE mean IAE min IAE
Time in

EM
Iteration

Mean # of
Positive
Weights

100 100 1 4 0.26 0.4 0.22 0.1 0.49 6.81
100 100 1 8 0.39 0.46 0.35 0.26 0.45 5.92
100 200 1 4 0.24 0.4 0.18 0.08 0.81 7.26
100 200 1 8 0.38 0.43 0.35 0.29 0.66 6.55
500 100 1 4 0.25 0.31 0.23 0.14 1.06 8.49
500 100 1 8 0.38 0.39 0.35 0.32 1.23 9.04
500 200 1 4 0.19 0.3 0.15 0.1 1.73 9.14
500 200 1 8 0.38 0.39 0.35 0.31 1.36 10.86

1000 100 1 4 0.25 0.29 0.23 0.17 1.65 8.74
1000 100 1 8 0.38 0.42 0.35 0.32 1.29 10.2
1000 200 1 4 0.18 0.22 0.15 0.1 2.33 9.9
1000 200 1 8 0.38 0.38 0.35 0.32 2.3 12.89
100 100 2 4 0.31 0.47 0.27 0.16 0.43 7.07
100 100 2 8 0.35 0.42 0.32 0.22 0.43 6.5
100 200 2 4 0.3 0.4 0.26 0.12 0.78 7.95
100 200 2 8 0.35 0.41 0.32 0.22 0.78 6.92
500 100 2 4 0.31 0.34 0.28 0.23 1.3 8.31
500 100 2 8 0.35 0.37 0.33 0.27 1.17 9.74
500 200 2 4 0.28 0.33 0.25 0.15 1.54 10
500 200 2 8 0.35 0.37 0.32 0.27 1.47 10.95

1000 100 2 4 0.31 0.32 0.29 0.24 1.43 8.58
1000 100 2 8 0.35 0.37 0.32 0.29 1.63 10.8
1000 200 2 4 0.28 0.31 0.25 0.17 2.26 10.73
1000 200 2 8 0.35 0.35 0.32 0.29 2.25 13.49
100 100 5 4 0.35 0.4 0.32 0.23 0.55 6.84
100 100 5 8 0.38 0.43 0.34 0.25 0.51 6.46
100 200 5 4 0.34 0.42 0.3 0.17 0.79 7.71
100 200 5 8 0.38 0.42 0.35 0.27 0.84 6.91
500 100 5 4 0.35 0.36 0.32 0.28 1.11 8.17
500 100 5 8 0.38 0.39 0.35 0.31 1.23 9.87
500 200 5 4 0.32 0.36 0.3 0.23 1.42 9.93
500 200 5 8 0.38 0.38 0.35 0.31 1.74 11.31

1000 100 5 4 0.35 0.35 0.32 0.28 1.67 8.37
1000 100 5 8 0.38 0.37 0.35 0.32 1.58 11.1
1000 200 5 4 0.33 0.35 0.3 0.23 2.55 10.73
1000 200 5 8 0.38 0.38 0.35 0.31 2.23 13.87

*: the time to compute the dynamic programming problems is the same as in Table 1.
The two estimators use the same grid.

Table 2: Fixed Grid Likelihood*

M RMISE max IAE mean IAE min IAE Total
Time (s)*

Mean # of
Positive
Weights

Dynamic

Prog
Called

1 0.32 0.51 0.28 0.15 11.95 4.66 500
2 0.35 0.48 0.31 0.14 11.87 4.93 500
5 0.39 0.53 0.34 0.19 11.83 4.80 500

M RMISE max IAE mean IAE min IAE Total
Time (s)*

Mean # of
Positive
Weights

Dynamic

Prog
Called

1 0.38 0.47 0.35 0.23 12.02 4.59 500
2 0.37 0.49 0.33 0.22 11.94 4.95 500
5 0.41 0.54 0.36 0.26 11.91 4.76 500

M RMISE max IAE mean IAE min IAE Total
Time (s)

Mean # of
Positive
Weights

Dynamic

Prog
Called

1 0.15 0.17 0.09 0.05 10501.86 9.94 225887
2 0.14 0.15 0.09 0.04 9488.15 9.93 206134
5 0.14 0.18 0.09 0.06 9829.64 9.95 208435

*: Combined time of dynamic programming and optimization
**: Iterate EM ten times from one starting point

Fixed Grid Least Squares

Flexible Grid Likelihood**

Fixed Grid Likelihood

Table 3: N =50, R =10, K =4, All Three Estimators

